## SEKI Report

### Filtern

#### Dokumenttyp

- Preprint (10)
- Wissenschaftlicher Artikel (1)

#### Schlagworte

- Case-Based Reasoning (1)
- EBG (1)
- Fallbasiertes Schliessen (1)
- Fallbasiertes Schließen (1)
- Similarity Assessment (1)
- analogy (1)
- automated proof planner (1)
- case-based reasoning (1)
- concept representation (1)
- planning (1)

- 98,8
- Proof Presentation Based on Proof Plans (1998)
- The paper addresses two problems of comprehensible proof presentation, the hierarchically structured presentation at the level of proof methods and different presentation styles of construction proofs. It provides solutions for these problems that can make use of proof plans generated by an automated proof planner.

- 96,10
- Island Planning and Refinement (1996)
- Planning for realistic problems in a static and deterministic environment with complete information faces exponential search spaces and, more often than not, should produce plans comprehensible for the user. This article introduces new planning strategies inspired by proof planning examples in order to tackle the search-space-problem and the structured-plan-problem. Island planning and refinement as well as subproblem refinement are integrated into a general planning framework and some exemplary control knowledge suitable for proof planning is given.

- 97,8
- Progress in Proof Planning:Planning Limit Theorems Automatically (1999)
- Proof planning is an alternative methodology to classical automated theorem prov-ing based on exhausitve search that was first introduced by Bundy [8]. The goal ofthis paper is to extend the current realm of proof planning to cope with genuinelymathematical problems such as the well-known limit theorems first investigated for au-tomated theorem proving by Bledsoe. The report presents a general methodology andcontains ideas that are new for proof planning and theorem proving, most importantlyideas for search control and for the integration of domain knowledge into a general proofplanning framework. We extend proof planning by employing explicit control-rules andsupermethods. We combine proof planning with constraint solving. Experiments showthe influence of these mechanisms on the performance of a proof planner. For instance,the proofs of LIM+ and LIM* have been automatically proof planned in the extendedproof planner OMEGA.In a general proof planning framework we rationally reconstruct the proofs of limittheorems for real numbers (IR) that were first computed by the special-purpose programreported in [6]. Compared with this program, the rational reconstruction has severaladvantages: It relies on a general-purpose problem solver; it provides high-level, hi-erarchical representations of proofs that can be expanded to checkable ND-proofs; itemploys declarative contol knowledge that is modularly organized.

- 96,13
- Analogy in verification of state-based specifications (1999)
- The amount of user interaction is the prime cause of costs in interactiveprogram verification. This paper describes an internal analogy techniquethat reuses subproofs in the verification of state-based specifications. Itidentifies common patterns of subproofs and their justifications in orderto reuse these subproofs; thus significant savings on the number of userinteractions in a verification proof are achievable.

- 96,3
- When to Prove Theorems by Analogy? (1999)
- In recent years several computational systems and techniques fortheorem proving by analogy have been developed. The obvious prac-tical question, however, as to whether and when to use analogy hasbeen neglected badly in these developments. This paper addresses thisquestion, identifies situations where analogy is useful, and discussesthe merits of theorem proving by analogy in these situations. Theresults can be generalized to other domains.

- 93,13
- Analogies between Proofs - A Case Study (1999)
- This case study examines in detail the theorems and proofs that are shownby analogy in a mathematical textbook on semigroups and automata, thatis widely used as an undergraduate textbook in theoretical computer scienceat German universities (P. Deussen, Halbgruppen und Automaten, Springer1971). The study shows the important role of restructuring a proof for findinganalogous subproofs, and of reformulating a proof for the analogical trans-formation. It also emphasizes the importance of the relevant assumptions ofa known proof, i.e., of those assumptions actually used in the proof. In thisdocument we show the theorems, the proof structure, the subproblems andthe proofs of subproblems and their analogues with the purpose to providean empirical test set of cases for automated analogy-driven theorem proving.Theorems and their proofs are given in natural language augmented by theusual set of mathematical symbols in the studied textbook. As a first step weencode the theorems in logic and show the actual restructuring. Secondly, wecode the proofs in a Natural Deduction calculus such that a formal analysisbecomes possible and mention reformulations that are necessary in order toreveal the analogy.

- 93,10
- Reasoning with Assertions and Examples (1999)
- The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

- 93,7
- Change of Representation in Theorem Proving by Analogy (1999)
- Constructing an analogy between a known and already proven theorem(the base case) and another yet to be proven theorem (the target case) oftenamounts to finding the appropriate representation at which the base and thetarget are similar. This is a well-known fact in mathematics, and it was cor-roborated by our empirical study of a mathematical textbook, which showedthat a reformulation of the representation of a theorem and its proof is in-deed more often than not a necessary prerequisite for an analogical inference.Thus machine supported reformulation becomes an important component ofautomated analogy-driven theorem proving too.The reformulation component proposed in this paper is embedded into aproof plan methodology based on methods and meta-methods, where the latterare used to change and appropriately adapt the methods. A theorem and itsproof are both represented as a method and then reformulated by the set ofmetamethods presented in this paper.Our approach supports analogy-driven theorem proving at various levels ofabstraction and in principle makes it independent of the given and often acci-dental representation of the given theorems. Different methods can representfully instantiated proofs, subproofs, or general proof methods, and hence ourapproach also supports these three kinds of analogy respectively. By attachingappropriate justifications to meta-methods the analogical inference can oftenbe justified in the sense of Russell.This paper presents a model of analogy-driven proof plan construction andfocuses on empirically extracted meta-methods. It classifies and formally de-scribes these meta-methods and shows how to use them for an appropriatereformulation in automated analogy-driven theorem proving.

- 92,22
- OMEGA MKRP - A Proof Development Environment (1999)
- This report presents the main ideas underlyingtheOmegaGamma mkrp-system, an environmentfor the development of mathematical proofs. The motivation for the development ofthis system comes from our extensive experience with traditional first-order theoremprovers and aims to overcome some of their shortcomings. After comparing the benefitsand drawbacks of existing systems, we propose a system architecture that combinesthe positive features of different types of theorem-proving systems, most notably theadvantages of human-oriented systems based on methods (our version of tactics) andthe deductive strength of traditional automated theorem provers.In OmegaGamma mkrp a user first states a problem to be solved in a typed and sorted higher-order language (called POST ) and then applies natural deduction inference rules inorder to prove it. He can also insert a mathematical fact from an integrated data-base into the current partial proof, he can apply a domain-specific problem-solvingmethod, or he can call an integrated automated theorem prover to solve a subprob-lem. The user can also pass the control to a planning component that supports andpartially automates his long-range planning of a proof. Toward the important goal ofuser-friendliness, machine-generated proofs are transformed in several steps into muchshorter, better-structured proofs that are finally translated into natural language.This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)

- 92,13
- Analogical Reasoning with Typical Examples (1999)
- Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.