LSA Report
Filtern
Erscheinungsjahr
- 1999 (2) (entfernen)
- 96,9E
-
Experiments in the Automatic Selection of Problem-solving Strategies (1999)
- We present an approach to automating the selection of search-guiding heuris-tics that control the search conducted by a problem solver. The approach centerson representing problems with feature vectors that are vectors of numerical val-ues. Thus, similarity between problems can be determined by using a distancemeasure on feature vectors. Given a database of problems, each problem beingassociated with the heuristic that was used to solve it, heuristics to be employedto solve a novel problem are suggested in correspondence with the similaritybetween the novel problem and problems of the database.Our approach is strongly connected with instance-based learning and nearest-neighbor classification and therefore possesses incremental learning capabilities.In experimental studies it has proven to be a viable tool for achieving the finaland crucial missing piece of automation of problem solving - namely selecting anappropriate search-guiding heuristic - in a flexible way.This work was supported by the Deutsche Forschungsgemeinschaft (DFG).
- 95,8E
-
Exploiting past proof experience (1999)
- We are going to present two methods that allow to exploit previous expe-rience in the area of automated deduction. The first method adapts (learns)the parameters of a heuristic employed for controlling the application of infer-ence rules in order to find a known proof with as little redundant search effortas possible. Adaptation is accomplished by a genetic algorithm. A heuristiclearned that way can then be profitably used to solve similar problems. Thesecond method attempts to re-enact a known proof in a flexible manner in orderto solve an unknown problem whose proof is believed to lie in (close) vicinity.The experimental results obtained with an equational theorem prover show thatthese methods not only allow for impressive speed-ups, but also make it possibleto handle problems that were out of reach before.