## 31B20 Boundary value and inverse problems

The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

Nowadays one of the major objectives in geosciences is the determination of the gravitational field of our planet, the Earth. A precise knowledge of this quantity is not just interesting on its own but it is indeed a key point for a vast number of applications. The important question is how to obtain a good model for the gravitational field on a global scale. The only applicable solution - both in costs and data coverage - is the usage of satellite data. We concentrate on highly precise measurements which will be obtained by GOCE (Gravity Field and Steady State Ocean Circulation Explorer, launch expected 2006). This satellite has a gradiometer onboard which returns the second derivatives of the gravitational potential. Mathematically seen we have to deal with several obstacles. The first one is that the noise in the different components of these second derivatives differs over several orders of magnitude, i.e. a straightforward solution of this outer boundary value problem will not work properly. Furthermore we are not interested in the data at satellite height but we want to know the field at the Earth's surface, thus we need a regularization (downward-continuation) of the data. These two problems are tackled in the thesis and are now described briefly. Split Operators: We have to solve an outer boundary value problem at the height of the satellite track. Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We present a different approach: We classify all first and purely second order operators which fulfill that a harmonic function stays harmonic under their application. This task is done by using modern algebraic methods for solving systems of partial differential equations symbolically. Now we can look at the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of the differential operator, i.e. integration. In particular we are capable to deal with derivatives which are tangential to the boundary. Auto-Regularization: The second obstacle is finding a proper regularization procedure. This is complicated by the fact that we are facing stochastic rather than deterministic noise. The main question is how to find an optimal regularization parameter which is impossible without any additional knowledge. However we could show that with a very limited number of additional information, which are obtainable also in practice, we can regularize in an asymptotically optimal way. In particular we showed that the knowledge of two input data sets allows an order optimal regularization procedure even under the hard conditions of Gaussian white noise and an exponentially ill-posed problem. A last but rather simple task is combining data from different derivatives which can be done by a weighted least squares approach using the information we obtained out of the regularization procedure. A practical application to the downward-continuation problem for simulated gravitational data is shown.

The inverse problem of recovering the Earth's density distribution from satellite data of the first or second derivative of the gravitational potential at orbit height is discussed. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbit height is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust.