## I.1.2 Algorithms (F.2.1-2)

### Refine

#### Keywords

- Conservation laws (1)
- Droplet breakage (1)
- Droplet coalescence (1)
- Erhaltungsgleichungen (1)
- Flüssig-Flüssig-Extraktion (1)
- Hydrodynamics (1)
- Hydrodynamik (1)
- Liquid-liquid dispersion (1)
- Mathematik (1)
- Numerische Simulat (1)

#### Faculty / Organisational entity

In the first part of the thesis we develop the theory of standard bases in free modules over (localized) polynomial rings. Given that linear equations are solvable in the coefficients of the polynomials, we introduce an algorithm to compute standard bases with respect to arbitrary (module) monomial orderings. Moreover, we take special care to principal ideal rings, allowing zero divisors. For these rings we design modified algorithms which are new and much faster than the general ones. These algorithms were motivated by current limitations in formal verification of microelectronic System-on-Chip designs. We show that our novel approach using computational algebra is able to overcome these limitations in important classes of applications coming from industrial challenges.
The second part is based on research in collaboration with Jason Morton, Bernd Sturmfels and Anne Shiu. We devise a general method to describe and compute a certain class of rank tests motivated by statistics. The class of rank tests may loosely be described as being based on computing the number of linear extensions to given partial orders. In order to apply these tests to actual data we developed two algorithms and used our implementations to apply the methodology to gene expression data created at the Stowers Institute for Medical Research. The dataset is concerned with the development of the vertebra. Our rankings proved valuable to the biologists.

The polydispersive nature of the turbulent droplet swarm in agitated liquid-liquid contacting equipment makes its mathematical modelling and the solution methodologies a rather sophisticated process. This polydispersion could be modelled as a population of droplets randomly distributed with respect to some internal properties at a specific location in space using the population balance equation as a mathematical tool. However, the analytical solution of such a mathematical model is hardly to obtain except for particular idealized cases, and hence numerical solutions are resorted to in general. This is due to the inherent nonlinearities in the convective and diffusive terms as well as the appearance of many integrals in the source term. In this work two conservative discretization methodologies for both internal (droplet state) and external (spatial) coordinates are extended and efficiently implemented to solve the population balance equation (PBE) describing the hydrodynamics of liquid-liquid contacting equipment. The internal coordinate conservative discretization techniques of Kumar and Ramkrishna (1996a, b) originally developed for the solution of PBE in simple batch systems are extended to continuous flow systems and validated against analytical solutions as well as published experimental droplet interaction functions and hydrodynamic data. In addition to these methodologies, we presented a conservative discretization approach for droplet breakage in batch and continuous flow systems, where it is found to have identical convergence characteristics when compared to the method of Kumar and Ramkrishna (1996a). Apart from the specific discretization schemes, the numerical solution of droplet population balance equations by discretization is known to suffer from inherent finite domain errors (FDE). Two approaches that minimize the total FDE during the solution of the discrete PBEs using an approximate optimal moving (for batch) and fixed (for continuous systems) grids are introduced (Attarakih, Bart & Faqir, 2003a). As a result, significant improvements are achieved in predicting the number densities, zero and first moments of the population. For spatially distributed populations (such as extraction columns) the resulting system of partial differential equations is spatially discretized in conservative form using a simplified first order upwind scheme as well as first and second order nonoscillatory central differencing schemes (Kurganov & Tadmor, 2000). This spatial discretization avoids the characteristic decomposition of the convective flux based on the approximate Riemann Solvers and the operator splitting technique required by classical upwind schemes (Karlsen et al., 2001). The time variable is discretized using an implicit strongly stable approach that is formulated by careful lagging of the nonlinear parts of the convective and source terms. The present algorithms are tested against analytical solutions of the simplified PBE through many case studies. In all these case studies the discrete models converges successfully to the available analytical solutions and to solutions on relatively fine grids when the analytical solution is not available. This is accomplished by deriving five analytical solutions of the PBE in continuous stirred tank and liquid-liquid extraction column for especial cases of breakage and coalescence functions. As an especial case, these algorithms are implemented via a windows computer code called LLECMOD (Liquid-Liquid Extraction Column Module) to simulate the hydrodynamics of general liquid-liquid extraction columns (LLEC). The user input dialog makes the LLECMOD a user-friendly program that enables the user to select grids, column dimensions, flow rates, velocity models, simulation parameters, dispersed and continuous phases chemical components, and droplet phase space-time solvers. The graphical output within the windows environment adds to the program a distinctive feature and makes it very easy to examine and interpret the results very quickly. Moreover, the dynamic model of the dispersed phase is carefully treated to correctly predict the oscillatory behavior of the LLEC hold up. In this context, a continuous velocity model corresponding to the manipulation of the inlet continuous flow rate through the control of the dispersed phase level is derived to get rid of this behavior.