## Fraunhofer (ITWM)

- Discrete Lagrangian mechanics and geometrically exact Cosserat rods (2009)
- Inspired by Kirchhoff’s kinetic analogy, the special Cosserat theory of rods is formulatedin the language of Lagrangian mechanics. A static rod corresponds to an abstract Lagrangian system where the energy density takes the role of the Lagrangian function. The equilibrium equations are derived from a variational principle. Noether’s theorem relates their first integrals to frame-indifference, isotropy and uniformity. These properties can be formulated in terms of Lie group symmetries. The rotational degrees of freedom, present in the geometrically exact beam theory, are represented in terms of orthonormal director triads. To reduce the number of unknowns, Lagrange multipliers associated with the orthonormality constraints are eliminated using null-space matrices. This is done both in the continuous and in the discrete setting. The discrete equilibrium equations are used to compute discrete rod configurations, where different types of boundary conditions can be handled.

- Multibody dynamics simulation of geometrically exact Cosserat rods (2009)
- In this paper, we present a viscoelastic rod model that is suitable for fast and sufficiently accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (’stiff ’ dof), bending and torsion (’soft’ dof). For inner dissipation, a consistent damping potential from Antman is chosen. Our discrete model is based on a finite difference discretisation on a staggered grid. The right-hand side function f and the Jacobian ∂f/∂(q, v, t) of the dynamical system q˙ = v, v˙ = f(q, v, t) – after index reduction from three to zero – is free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore cheap to evaluate. For the time integration of the system, we use well established stiff solvers like RADAU5 or DASPK. As our model yields computation times within milliseconds, it is suitable for interactivemanipulation in ’virtual reality’ applications. In contrast to fast common VR rod models, our model reflects the structural mechanics solutions sufficiently correct, as comparison with ABAQUS finite element results shows.

- Pricing American call options under the assumption of stochastic dividends – An application of the Korn-Rogers model (2009)
- In nancial mathematics stock prices are usually modelled directly as a result of supply and demand and under the assumption that dividends are paid continuously. In contrast economic theory gives us the dividend discount model assuming that the stock price equals the present value of its future dividends. These two models need not to contradict each other - in their paper Korn and Rogers (2005) introduce a general dividend model preserving the stock price to follow a stochastic process and to be equal to the sum of all its discounted dividends. In this paper we specify the model of Korn and Rogers in a Black-Scholes framework in order to derive a closed-form solution for the pricing of American Call options under the assumption of a known next dividend followed by several stochastic dividend payments during the option's time to maturity.

- Hierarchy of mathematical models for production processes of technical textiles (2009)
- In this work we establish a hierarchy of mathematical models for the numerical simulation of the production process of technical textiles. The models range from highly complex three-dimensional fluid-solid interactions to one-dimensional fiber dynamics with stochastic aerodynamic drag and further to efficiently handable stochastic surrogate models for fiber lay-down. They are theoretically and numerically analyzed and coupled via asymptotic analysis, similarity estimates and parameter identification. Themodel hierarchy is applicable to a wide range of industrially relevant production processes and enables the optimization, control and design of technical textiles.

- Design of pleated filters by computer simulations (2009)
- Four aspects are important in the design of hydraulic lters. We distinguish between two cost factors and two performance factors. Regarding performance, filter eciencynd lter capacity are of interest. Regarding cost, there are production considerations such as spatial restrictions, material cost and the cost of manufacturing the lter. The second type of cost is the operation cost, namely the pressure drop. Albeit simulations should and will ultimately deal with all 4 aspects, for the moment our work is focused on cost. The PleatGeo Module generates three-dimensional computer models of a single pleat of a hydraulic lter interactively. PleatDict computes the pressure drop that will result for the particular design by direct numerical simulation. The evaluation of a new pleat design takes only a few hours on a standard PC compared to days or weeks used for manufacturing and testing a new prototype of a hydraulic lter. The design parameters are the shape of the pleat, the permeabilities of one or several layers of lter media and the geometry of a supporting netting structure that is used to keep the out ow area open. Besides the underlying structure generation and CFD technology, we present some trends regarding the dependence of pressure drop on design parameters that can serve as guide lines for the design of hydraulic lters. Compared to earlier two-dimensional models, the three-dimensional models can include a support structure.

- An energy conserving numerical scheme for the dynamics of hyperelastic rods (2009)
- A numerical method for special Cosserat rods based on Antman’s description [1] is developed for hyperelastic materials and potential forces. This method preserves the relevant properties of the underlying PDE system, namely the orthonormality of the directors and the conservation of the energy.

- A generic geometric approach to territory design and districting (2009)
- Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

- An improved multiaxial stress-strain correction model for elastic FE postprocessing (2009)
- In this paper, the model of Köttgen, Barkey and Socie, which corrects the elastic stress and strain tensor histories at notches of a metallic specimen under non-proportional loading, is improved. It can be used in connection with any multiaxial s -e -law of incremental plasticity. For the correction model, we introduce a constraint for the strain components that goes back to the work of Hoffmann and Seeger. Parameter identification for the improved model is performed by Automatic Differentiation and an established least squares algorithm. The results agree accurately both with transient FE computations and notch strain measurements.

- Customer loads correlation in truck engineering (2009)
- Safety and reliability requirements on the one side and short development cycles, low costs and lightweight design on the other side are two competing aspects of truck engineering. For safety critical components essentially no failures can be tolerated within the target mileage of a truck. For other components the goals are to stay below certain predefined failure rates. Reducing weight or cost of structures often also reduces strength and reliability. The requirements on the strength, however, strongly depend on the loads in actual customer usage. Without sufficient knowledge of these loads one needs large safety factors, limiting possible weight or cost reduction potentials. There are a lot of different quantities influencing the loads acting on the vehicle in actual usage. These ‘influencing quantities’ are, for example, the road quality, the driver, traffic conditions, the mission (long haulage, distribution or construction site), and the geographic region. Thus there is a need for statistical methods to model the load distribution with all its variability, which in turn can be used for the derivation of testing specifications.