## Fraunhofer (ITWM)

### Refine

#### Year of publication

#### Document Type

- Report (198)
- Preprint (19)
- Doctoral Thesis (4)
- Working Paper (1)

#### Keywords

- numerical upscaling (7)
- Integer programming (4)
- hub location (4)
- Darcy’s law (3)
- Heston model (3)
- Lagrangian mechanics (3)
- effective heat conductivity (3)
- facility location (3)
- non-Newtonian flow in porous media (3)
- optimization (3)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (222)
- Fachbereich Mathematik (2)

In this work, we analyze two important and simple models of short rates, namely Vasicek and CIR models. The models are described and then the sensitivity of the models with respect to changes in the parameters are studied. Finally, we give the results for the estimation of the model parameters by using two different ways.

In this paper mathematical models for liquid films generated by impinging jets are discussed. Attention is stressed to the interaction of the liquid film with some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)] found that the liquid film generated by impinging jets is very sensitive to properties of the wire which was used as an obstacle. The aim of this presentation is to propose a modification of the Taylor's model, which allows to simulate the film shape in cases, when the angle between jets is different from 180°. Numerical results obtained by discussed models give two different shapes of the liquid film similar as in Taylors experiments. These two shapes depend on the regime: either droplets are produced close to the obstacle or not. The difference between two regimes becomes larger if the angle between jets decreases. Existence of such two regimes can be very essential for some applications of impinging jets, if the generated liquid film can have a contact with obstacles.

Granular systems in solid-like state exhibit properties like stiffness
dependence on stress, dilatancy, yield or incremental non-linearity
that can be described within the continuum mechanical framework.
Different constitutive models have been proposed in the literature either based on relations between some components of the stress tensor or on a quasi-elastic description. After a brief description of these
models, the hyperelastic law recently proposed by Jiang and Liu [1]
will be investigated. In this framework, the stress-strain relation is
derived from an elastic strain energy density where the stable proper-
ties are linked to a Drucker-Prager yield criteria. Further, a numerical method based on the finite element discretization and Newton-
Raphson iterations is presented to solve the force balance equation.
The 2D numerical examples presented in this work show that the stress
distributions can be computed not only for triangular domains, as previoulsy done in the literature, but also for more complex geometries.
If the slope of the heap is greater than a critical value, numerical instabilities appear and no elastic solution can be found, as predicted by
the theory. As main result, the dependence of the material parameter
Xi on the maximum angle of repose is established.

Radiotherapy is one of the major forms in cancer treatment. The patient is irradiated with high-energetic photons or charged particles with the primary goal of delivering sufficiently high doses to the tumor tissue while simultaneously sparing the surrounding healthy tissue. The inverse search for the treatment plan giving the desired dose distribution is done by means of numerical optimization [11, Chapters 3-5]. For this purpose, the aspects of dose quality in the tissue are modeled as criterion functions, whose mathematical properties also affect the type of the corresponding optimization problem. Clinical practice makes frequent use of criteria that incorporate volumetric and spatial information about the shape of the dose distribution. The resulting optimization problems are of global type by empirical knowledge and typically computed with generic global solver concepts, see for example [16]. The development of good global solvers to compute radiotherapy optimization problems is an important topic of research in this application, however, the structural properties of the underlying criterion functions are typically not taken into account in this context.

This report reviews selected image binarization and segmentation methods that have been proposed and which are suitable for the processing of volume images. The focus is on thresholding, region growing, and shape–based methods. Rather than trying to give a complete overview of the field, we review the original ideas and concepts of selected methods, because we believe this information to be important for judging when and under what circumstances a segmentation algorithm can be expected to work properly.

We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented.

The stationary heat equation is solved with periodic boundary conditions in geometrically complex composite materials with high contrast in the thermal conductivities of the individual phases. This is achieved by harmonic averaging and explicitly introducing the jumps across the material interfaces as additional variables. The continuity of the heat flux yields the needed extra equations for these variables. A Schur-complent formulation for the new variables is derived that is solved using the FFT and BiCGStab methods. The EJ-HEAT solver is given as a 3-page Matlab program in the Appendix. The C++ implementation is used for material design studies. It solves 3-dimensional problems with around 190 Mio variables on a 64-bit AMD Opteron desktop system in less than 6 GB memory and in minutes to hours, depending on the contrast and required accuracy. The approach may also be used to compute effective electric conductivities because they are governed by the stationary heat equation.

Four aspects are important in the design of hydraulic lters. We distinguish between two cost factors and two performance factors. Regarding performance, filter eciencynd lter capacity are of interest. Regarding cost, there are production considerations such as spatial restrictions, material cost and the cost of manufacturing the lter. The second type of cost is the operation cost, namely the pressure drop. Albeit simulations should and will ultimately deal with all 4 aspects, for the moment our work is focused on cost. The PleatGeo Module generates three-dimensional computer models of a single pleat of a hydraulic lter interactively. PleatDict computes the pressure drop that will result for the particular design by direct numerical simulation. The evaluation of a new pleat design takes only a few hours on a standard PC compared to days or weeks used for manufacturing and testing a new prototype of a hydraulic lter. The design parameters are the shape of the pleat, the permeabilities of one or several layers of lter media and the geometry of a supporting netting structure that is used to keep the out ow area open. Besides the underlying structure generation and CFD technology, we present some trends regarding the dependence of pressure drop on design parameters that can serve as guide lines for the design of hydraulic lters. Compared to earlier two-dimensional models, the three-dimensional models can include a support structure.

A fully automatic procedure is proposed to rapidly compute the permeability of porous materials from their binarized microstructure. The discretization is a simplified version of Peskin’s Immersed Boundary Method, where the forces are applied at the no-slip grid points. As needed for the computation of permeability, steady flows at zero Reynolds number are considered. Short run-times are achieved by eliminating the pressure and velocity variables using an Fast Fourier Transform-based and 4 Poisson problembased fast inversion approach on rectangular parallelepipeds with periodic boundary conditions. In reference to calling it a fast method using fictitious or artificial forces, the implementation is called FFF-Stokes. Large scale computations on 3d images are quickly and automatically performed to estimate the permeability of some sample materials. A matlab implementation is provided to allow readers to experience the automation and speed of the method for realistic three-dimensional models.

In the presented work, we make use of the strong reciprocity between kinematics and geometry to build a geometrically nonlinear, shearable low order discrete shell model of Cosserat type defined on triangular meshes, from which we deduce a rotation–free Kirchhoff type model with the triangle vertex positions as degrees of freedom. Both models behave physically plausible already on very coarse meshes, and show good
convergence properties on regular meshes. Moreover, from the theoretical side, this deduction provides a
common geometric framework for several existing models.

Die Simulation von Prüfständen und insbesondere von Baugruppen und Gesamtfahrzeugen auf Prüfständen durch Kopplung von Mehrkörpersimulation mit Modellen für Regelung und Aktuatorik leistet einen wesentlichen Beitrag zur Entwicklungszeitverkürzung. In diesem Beitrag wird ein Kooperationsprojekt vorgestellt, in dem ein Co- Simulationsmodell für die beweglichen Massen sowie die Regelung und Hydraulik eines Gesamtfahrzeugprüfstands erstellt wurde. Es wird sowohl auf die Validierung des Fahrzeugmodells durch Straßenmessungen als auch auf die Identifikation und Validierung des Prüfstandsmodells einschließlich Servohydraulik und Regelung eingegangen.

Worldwide the installed capacity of renewable technologies for electricity production is
rising tremendously. The German market is particularly progressive and its regulatory
rules imply that production from renewables is decoupled from market prices and electricity
demand. Conventional generation technologies are to cover the residual demand
(defined as total demand minus production from renewables) but set the price at the
exchange. Existing electricity price models do not account for the new risks introduced
by the volatile production of renewables and their effects on the conventional demand
curve. A model for residual demand is proposed, which is used as an extension of
supply/demand electricity price models to account for renewable infeed in the market.
Infeed from wind and solar (photovoltaics) is modeled explicitly and withdrawn from
total demand. The methodology separates the impact of weather and capacity. Efficiency
is transformed on the real line using the logit-transformation and modeled as a stochastic process. Installed capacity is assumed a deterministic function of time. In a case study the residual demand model is applied to the German day-ahead market
using a supply/demand model with a deterministic supply-side representation. Price trajectories are simulated and the results are compared to market future and option
prices. The trajectories show typical features seen in market prices in recent years and the model is able to closely reproduce the structure and magnitude of market prices.
Using the simulated prices it is found that renewable infeed increases the volatility of forward prices in times of low demand, but can reduce volatility in peak hours. Prices
for different scenarios of installed wind and solar capacity are compared and the meritorder effect of increased wind and solar capacity is calculated. It is found that wind
has a stronger overall effect than solar, but both are even in peak hours.

Continuously improving imaging technologies allow to capture the complex spatial
geometry of particles. Consequently, methods to characterize their three
dimensional shapes must become more sophisticated, too. Our contribution to
the geometric analysis of particles based on 3d image data is to unambiguously
generalize size and shape descriptors used in 2d particle analysis to the spatial
setting.
While being defined and meaningful for arbitrary particles, the characteristics
were actually selected motivated by the application to technical cleanliness. Residual
dirt particles can seriously harm mechanical components in vehicles, machines,
or medical instruments. 3d geometric characterization based on micro-computed
tomography allows to detect dangerous particles reliably and with
high throughput. It thus enables intervention within the production line. Analogously
to the commonly agreed standards for the two dimensional case, we
show how to classify 3d particles as granules, chips and fibers on the basis of
the chosen characteristics. The application to 3d image data of dirt particles is
demonstrated.

It is well known that the structure at a microscopic point of view strongly influences the
macroscopic properties of materials. Moreover, the advancement in imaging technologies allows
to capture the complexity of the structures at always decreasing scales. Therefore, more
sophisticated image analysis techniques are needed.
This thesis provides tools to geometrically characterize different types of three-dimensional
structures with applications to industrial production and to materials science. Our goal is to
enhance methods that allow the extraction of geometric features from images and the automatic
processing of the information.
In particular, we investigate which characteristics are sufficient and necessary to infer
the desired information, such as particles classification for technical cleanliness and
fitting of stochastic models in materials science.
In the production line of automotive industry, dirt particles collect on the surface of mechanical
components. Residual dirt might reduce the performance and durability of assembled products.
Geometric characterization of these particles allows to identify their potential danger.
While the current standards are based on 2d microscopic images, we extend the characterization
to 3d.
In particular, we provide a collection of parameters that exhaustively describe size and shape
of three-dimensional objects and can be efficiently estimated from binary images. Furthermore,
we show that only a few features are sufficient to classify particles according to the standards
of technical cleanliness.
In the context of materials science, we consider two types of microstructures: fiber systems
and foams.
Stochastic geometry grants the fundamentals for versatile models able to encompass the
geometry observed in the samples. To allow automatic model fitting, we need rules stating which
parameters of the model yield the best-fitting characteristics. However, the validity of such
rules strongly depends on the properties of the structures and on the choice of the model.
For instance, isotropic orientation distribution yields the best theoretical results for Boolean
models and Poisson processes of cylinders with circular cross sections. Nevertheless, fiber
systems in composites are often anisotropic.
Starting from analytical results from the literature, we derive formulae for anisotropic
Poisson processes of cylinders with polygonal cross sections that can be directly used in
applications. We apply this procedure to a sample of medium density fiber board. Even
if image resolution does not allow to estimate reliably characteristics of the singles fibers,
we can fit Boolean models and Poisson cylinder processes. In particular, we show the complete
model fitting and validation procedure with cylinders with circular and squared cross sections.
Different problems arise when modeling cellular materials. Motivated by the physics of foams,
random Laguerre tessellations are a good choice to model the pore system of foams.
Considering tessellations generated by systems of non-overlapping spheres allows to control the
cell size distribution, but yields the loss of an analytical description of the model.
Nevertheless, automatic model fitting can still be obtained by approximating the characteristics
of the tessellation depending on the parameters of the model. We investigate how to improve
the choice of the model parameters. Angles between facets and between edges were never considered
so far. We show that the distributions of angles in Laguerre tessellations
depend on the model parameters. Thus, including the moments of the angles still allows automatic
model fitting. Moreover, we propose an algorithm to estimate angles from images of real foams.
We observe that angles are matched well in random Laguerre tessellations also when they are not
employed to choose the model parameters. Then, we concentrate on the edge length distribution. In
Laguerre tessellations occur many more short edges than in real foams. To deal with this problem,
we consider relaxed models. Relaxation refers to topological and structural modifications
of a tessellation in order to make it comply with Plateau's laws of mechanical equilibrium. We inspect
samples of different types of foams, closed and open cell foams, polymeric and metallic. By comparing
the geometric characteristics of the model and of the relaxed tessellations, we conclude that whether
the relaxation improves the edge length distribution strongly depends on the type of foam.

We present the application of a meshfree method for simulations of interaction between fluids and flexible structures. As a flexible structure we consider a sheet of paper. In a two-dimensional framework this sheet can be modeled as curve by the dynamical Kirchhoff-Love theory. The external forces taken into account are gravitation and the pressure difference between upper and lower surface of the sheet. This pressure difference is computed using the Finite Pointset Method (FPM) for the incompressible Navier-Stokes equations. FPM is a meshfree, Lagrangian particle method. The dynamics of the sheet are computed by a finite difference method. We show the suitability of the meshfree method for simulations of fluid-structure interaction in several applications.

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
(2008)

We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young-Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.

Lithium-ion batteries are broadly used nowadays in all kinds of portable electronics, such as laptops, cell phones, tablets, e-book readers, digital cameras, etc. They are preferred to other types of rechargeable batteries due to their superior characteristics, such as light weight and high energy density, no memory effect, and a big number of charge/discharge cycles. The high demand and applicability of Li-ion batteries naturally give rise to the unceasing necessity of developing better batteries in terms of performance and lifetime. The aim of the mathematical modelling of Li-ion batteries is to help engineers test different battery configurations and electrode materials faster and cheaper. Lithium-ion batteries are multiscale systems. A typical Li-ion battery consists of multiple connected electrochemical battery cells. Each cell has two electrodes - anode and cathode, as well as a separator between them that prevents a short circuit.
Both electrodes have porous structure composed of two phases - solid and electrolyte. We call macroscale the lengthscale of the whole electrode and microscale - the lengthscale at which we can distinguish the complex porous structure of the electrodes. We start from a Li-ion battery model derived on the microscale. The model is based on nonlinear diffusion type of equations for the transport of Lithium ions and charges in the electrolyte and in the active material. Electrochemical reactions on the solid-electrolyte interface couple the two phases. The interface kinetics is modelled by the highly nonlinear Butler-Volmer interface conditions. Direct numerical simulations with standard methods, such as the Finite Element Method or Finite Volume Method, lead to ill-conditioned problems with a huge number of degrees of freedom which are difficult to solve. Therefore, the aim of this work is to derive upscaled models on the lengthscale of the whole electrode so that we do not have to resolve all the small-scale features of the porous microstructure thus reducing the computational time and cost. We do this by applying two different upscaling techniques - the Asymptotic Homogenization Method and the Multiscale Finite Element Method (MsFEM). We consider the electrolyte and the solid as two self-complementary perforated domains and we exploit this idea with both upscaling methods. The first method is restricted only to periodic media and periodically oscillating solutions while the second method can be applied to randomly oscillating solutions and is based on the Finite Element Method framework. We apply the Asymptotic Homogenization Method to derive a coupled macro-micro upscaled model under the assumption of periodic electrode microstructure. A crucial step in the homogenization procedure is the upscaling of the Butler-Volmer interface conditions. We rigorously determine the asymptotic order of the interface exchange current densities and we perform a comprehensive numerical study in order to validate the derived homogenized Li-ion battery model. In order to upscale the microscale battery problem in the case of random electrode microstructure we apply the MsFEM, extended to problems in perforated domains with Neumann boundary conditions on the holes. We conduct a detailed numerical investigation of the proposed algorithm and we show numerical convergence of the method that we design. We also apply the developed technique to a simplified two-dimensional Li-ion battery problem and we show numerical convergence of the solution obtained with the MsFEM to the reference microscale one.

Lithium-ion batteries are increasingly becoming an ubiquitous part of our everyday life - they are present in mobile phones, laptops, tools, cars, etc. However, there are still many concerns about their longevity and their safety. In this work we focus on the simulation of several degradation mechanisms on the microscopic scale, where one can resolve the active materials inside the electrodes of the lithium-ion batteries as porous structures. We mainly study two aspects - heat generation and mechanical stress. For the former we consider an electrochemical non-isothermal model on the spatially resolved porous scale to observe the temperature increase inside a battery cell, as well as to observe the individual heat sources to assess their contributions to the total heat generation. As a result from our experiments, we determined that the temperature has very small spatial variance for our test cases and thus allows for an ODE formulation of the heat equation.
The second aspect that we consider is the generation of mechanical stress as a result of the insertion of lithium ions in the electrode materials. We study two approaches - using small strain models and finite strain models. For the small strain models, the initial geometry and the current geometry coincide. The model considers a diffusion equation for the lithium ions and equilibrium equation for the mechanical stress. First, we test a single perforated cylindrical particle using different boundary conditions for the displacement and with Neumann boundary conditions for the diffusion equation. We also test for cylindrical particles, but with boundary conditions for the diffusion equation in the electrodes coming from an isothermal electrochemical model for the whole battery cell. For the finite strain models we take in consideration the deformation of the initial geometry as a result of the intercalation and the mechanical stress. We compare two elastic models to study the sensitivity of the predicted elastic behavior on the specific model used. We also consider a softening of the active material dependent on the concentration of the lithium ions and using data for silicon electrodes. We recover the general behavior of the stress from known physical experiments.
Some models, like the mechanical models we use, depend on the local values of the concentration to predict the mechanical stress. In that sense we perform a short comparative study between the Finite Element Method with tetrahedral elements and the Finite Volume Method with voxel volumes for an isothermal electrochemical model.
The spatial discretizations of the PDEs are done using the Finite Element Method. For some models we have discontinuous quantities where we adapt the FEM accordingly. The time derivatives are discretized using the implicit Backward Euler method. The nonlinear systems are linearized using the Newton method. All of the discretized models are implemented in a C++ framework developed during the thesis.

It is commonly believed that not all degrees of freedom are needed to produce good solutions for the treatment planning problem in intensity modulated radiotherapy treatment (IMRT). However, typical methods to exploit this fact have either increased the complexity of the optimization problem or were heuristic in nature. In this work we introduce a technique based on adaptively refining variable clusters to successively attain better treatment plans. The approach creates approximate solutions based on smaller models that may get arbitrarily close to the optimal solution. Although the method is illustrated using a specific treatment planning model, the components constituting the variable clustering and the adaptive refinement are independent of the particular optimization problem.

It has been empirically verified that smoother intensity maps can be expected to produce shorter sequences when step-and-shoot collimation is the method of choice. This work studies the length of sequences obtained by the sequencing algorithm by Bortfeld and Boyer using a probabilistic approach. The results of this work build a theoretical foundation for the up to now only empirically validated fact that if smoothness of intensity maps is considered during their calculation, the solutions can be expected to be more easily applied.