## Fraunhofer (ITWM)

### Refine

#### Year of publication

- 2007 (27) (remove)

#### Language

- English (27) (remove)

#### Keywords

- numerical upscaling (4)
- Darcy’s law (2)
- effective heat conductivity (2)
- single phase flow (2)
- 3D (1)
- Asymptotic Expansion (1)
- Bayesian Model Averaging (1)
- Boolean polynomials (1)
- Boundary Value Problem (1)
- CIR model (1)

- Wild bootstrap tests for comparing signals and images (2007)
- In this expository article, we give an introduction into the basics of bootstrap tests in general. We discuss the residual-based and the wild bootstrap for regression models suitable for applications in signal and image analysis. As an illustration of the general idea, we consider a particular test for detecting differences between two noisy signals or images which also works for noise with variable variance. The test statistic is essentially the integrated squared difference between the signals after denoising them by local smoothing. Determining its quantile, which marks the boundary between accepting and rejecting the hypothesis of equal signals, is hardly possible by standard asymptotic methods whereas the bootstrap works well. Applied to the rows and columns of images, the resulting algorithm not only allows for the detection of defects but also for the characterization of their location and shape in surface inspection problems.

- Solving the ordered one-median problem in the plane (2007)
- In this paper we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

- Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning (2007)
- Abstract. The stationary, isothermal rotational spinning process of fibers is considered. The investigations are concerned with the case of large Reynolds (± = 3/Re ¿ 1) and small Rossby numbers (\\\" ¿ 1). Modelling the fibers as a Newtonian fluid and applying slender body approximations, the process is described by a two–point boundary value problem of ODEs. The involved quantities are the coordinates of the fiber’s centerline, the fluid velocity and viscous stress. The inviscid case ± = 0 is discussed as a reference case. For the viscous case ± > 0 numerical simulations are carried out. Transfering some properties of the inviscid limit to the viscous case, analytical bounds for the initial viscous stress of the fiber are obtained. A good agreement with the numerical results is found. These bounds give strong evidence, that for ± > 3\\\"2 no physical relevant solution can exist. A possible interpretation of the above coupling of ± and \\\" related to the die–swell phenomenon is given.

- Smooth intensity maps and the Bortfeld-Boyer sequencer (2007)
- It has been empirically verified that smoother intensity maps can be expected to produce shorter sequences when step-and-shoot collimation is the method of choice. This work studies the length of sequences obtained by the sequencing algorithm by Bortfeld and Boyer using a probabilistic approach. The results of this work build a theoretical foundation for the up to now only empirically validated fact that if smoothness of intensity maps is considered during their calculation, the solutions can be expected to be more easily applied.

- Parallel software tool for decomposing and meshing of 3d structures (2007)
- An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered.

- Numerical study of two-grid preconditioners for 1d elliptic problems with highly oscillating discontinuous coefficients (2007)
- Abstract — Various advanced two-level iterative methods are studied numerically and compared with each other in conjunction with finite volume discretizations of symmetric 1-D elliptic problems with highly oscillatory discontinuous coefficients. Some of the methods considered rely on the homogenization approach for deriving the coarse grid operator. This approach is considered here as an alternative to the well-known Galerkin approach for deriving coarse grid operators. Different intergrid transfer operators are studied, primary consideration being given to the use of the so-called problemdependent prolongation. The two-grid methods considered are used as both solvers and preconditioners for the Conjugate Gradient method. The recent approaches, such as the hybrid domain decomposition method introduced by Vassilevski and the globallocal iterative procedure proposed by Durlofsky et al. are also discussed. A two-level method converging in one iteration in the case where the right-hand side is only a function of the coarse variable is introduced and discussed. Such a fast convergence for problems with discontinuous coefficients arbitrarily varying on the fine scale is achieved by a problem-dependent selection of the coarse grid combined with problem-dependent prolongation on a dual grid. The results of the numerical experiments are presented to illustrate the performance of the studied approaches.

- Hydrodynamic limit of the Fokker-Planck-equation describing fiber lay-down processes (2007)
- In this paper, a stochastic model [5] for the turbulent fiber laydown in the industrial production of nonwoven materials is extended by including a moving conveyor belt. In the hydrodynamic limit corresponding to large noise values, the transient and stationary joint probability distributions are determined using the method of multiple scales and the Chapman-Enskog method. Moreover, exponential convergence towards the stationary solution is proven for the reduced problem. For special choices of the industrial parameters, the stochastic limit process is an Ornstein{Uhlenbeck. It is a good approximation of the fiber motion even for moderate noise values. Moreover, as shown by Monte{Carlo simulations, the limiting process can be used to assess the quality of nonwoven materials in the industrial application by determining distributions of functionals of the process.

- Modeling and simulation of the pressing section of a paper machine (2007)
- We are concerned with modeling and simulation of the pressing section of a paper machine. We state a two-dimensional model of a press nip which takes into account elasticity and flow phenomena. Nonlinear filtration laws are incorporated into the flow model. We present a numerical solution algorithm and a numerical investigation of the model with special focus on inertia effects.

- On parallel numerical algorithms for simulating industrial filtration problems (2007)
- The performance of oil filters used in the automotive industry can be significantly improved, especially when computer simulation is an essential component of the design process. In this paper, we consider parallel numerical algorithms for solving mathematical models describing the process of filtration, filtering out solid particles from liquid oil. The Navier-Stokes-Brinkmann system of equations is used to describe the laminar flow of incompressible isothermal oil. The space discretization in the complicated filter geometry is based on the finite-volume method. Special care is taken for an accurate approximation of velocity and pressure on the interface between the fluid and the porous media. The time discretization used here is a proper modification of the fractional time step discretization (cf. Chorin scheme) of the Navier-Stokes equations, where the Brinkmann term is considered at both, prediction and correction substeps. A data decomposition method is used to develop a parallel algorithm, where the domain is distributed among processors by using a structured reference grid. The MPI library is used to implement the data communication part of the algorithm. A theoretical model is proposed for the estimation of the complexity of the given parallel algorithm and a scalability analysis is done on the basis of this model. Results of computational experiments are presented, and the accuracy and efficiency of the parallel algorithm is tested on real industrial geometries.

- Dynamics of curved viscous fibers with surface tension (2007)
- In this paper we extend the slender body theory for the dynamics of a curved inertial viscous Newtonian fiber [23] by the inclusion of surface tension in the systematic asymptotic framework and the deduction of boundary conditions for the free fiber end, as it occurs in rotational spinning processes of glass fibers. The fiber ow is described by a three-dimensional free boundary value problem in terms of instationary incompressible Navier-Stokes equations under the neglect of temperature dependence. From standard regular expansion techniques in powers of the slenderness parameter we derive asymptotically leading-order balance laws for mass and momentum combining the inner viscous transport with unrestricted motion and shape of the fiber center-line which becomes important in the practical application. For the numerical investigation of the effects due to surface tension, viscosity, gravity and rotation on the fiber behavior we apply a fnite volume method with implicit flux discretization.