## Fraunhofer (ITWM)

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

In the literature, there are at least two equivalent two-factor Gaussian models for the instantaneous short rate. These are the original two-factor Hull White model (see [3]) and the G2++ one by Brigo and Mercurio (see [1]). Both these models first specify a time homogeneous two-factor short rate dynamics and then by adding a deterministic shift function '(·) fit exactly the initial term structure of interest rates. However, the obtained results are rather clumsy and not intuitive which means that a special care has to be taken for their correct numerical implementation.

We present a parsimonious multi-asset Heston model. All single-asset submodels follow the well-known Heston dynamics and their parameters are typically calibrated on implied market volatilities. We focus on the calibration of the correlation structure between the single-asset marginals in the absence of sucient liquid cross-asset option price data. The presented model is parsimonious in the sense that d(d􀀀1)=2 asset-asset cross-correlations are required for a d-asset Heston model. In order to calibrate the model, we present two general setups corresponding to relevant practical situations: (1) when the empirical cross-asset correlations in the risk neutral world are given by the user and we need to calibrate the correlations between the driving Brownian motions or (2) when they have to be estimated from the historical time series. The theoretical background, including the ergodicity of the multidimensional CIR process, for the proposed estimators is also studied.

Radiotherapy is one of the major forms in cancer treatment. The patient is irradiated with high-energetic photons or charged particles with the primary goal of delivering sufficiently high doses to the tumor tissue while simultaneously sparing the surrounding healthy tissue. The inverse search for the treatment plan giving the desired dose distribution is done by means of numerical optimization [11, Chapters 3-5]. For this purpose, the aspects of dose quality in the tissue are modeled as criterion functions, whose mathematical properties also affect the type of the corresponding optimization problem. Clinical practice makes frequent use of criteria that incorporate volumetric and spatial information about the shape of the dose distribution. The resulting optimization problems are of global type by empirical knowledge and typically computed with generic global solver concepts, see for example [16]. The development of good global solvers to compute radiotherapy optimization problems is an important topic of research in this application, however, the structural properties of the underlying criterion functions are typically not taken into account in this context.

In this paper, the model of Köttgen, Barkey and Socie, which corrects the elastic stress and strain tensor histories at notches of a metallic specimen under non-proportional loading, is improved. It can be used in connection with any multiaxial s -e -law of incremental plasticity. For the correction model, we introduce a constraint for the strain components that goes back to the work of Hoffmann and Seeger. Parameter identification for the improved model is performed by Automatic Differentiation and an established least squares algorithm. The results agree accurately both with transient FE computations and notch strain measurements.

A general multi-period network redesign problem arising in the context of strategic supply chain planning (SCP) is studied. Several aspects of practical relevance in SCP are captured namely, multiple facility layers with different types of facilities, flows between facilities in the same layer, direct shipments to customers, and facility relocation. An efficient two-phase heuristic approach is proposed for obtaining feasible solutions to the problem, which is initially modeled as a large-scale mixed-integer linear program. In the first stage of the heuristic, a linear programming rounding strategy is applied to second initial values for the binary location variables in the model. The second phase of the heuristic uses local search to correct the initial solution when feasibility is not reached or to improve the solution when its quality does not meet given criteria. The results of an extensive computational study performed on randomly generated instances are reported.

Forderungen nach kürzeren Entwicklungszyklen bei gleichzeitig höherer Produktqualität führen in allen Bereichen der Nutzfahrzeugtechnik und insbesondere auch bei Baumaschinen zum verstärkten Einsatz von Simulationssoftware. Um in diesem Sinne Lebensdauerberechnungen durchführen zu können, sind jedoch genaue Kenntnisse über die im Kundeneinsatz auftretenden Betriebslasten und Beanspruchungen erforderlich. Für deren Ermittlung hat der Baumaschinenhersteller VOLVO Construction Equipment einen Mobilbagger umfassend mit Messtechnik ausgestattet, die neben den mechanischen Belastungen an der Arbeitsausrüstung auch wesentliche Kenndaten des Hydrauliksystems und des Fahrantriebs erfasst. Dieser Messbagger wurde bereits bei unterschiedlichen Kunden in Europa eingesetzt. Der Artikel beschreibt die methodische Vorgehensweise zur Verarbeitung der erfassten Daten und zur Generierung von repräsentativen Nutzungsprofilen am Beispiel der mechanischen Belastungen an der Arbeitseinrichtung, die im Wesentlichen vom Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM) erarbeitet wurde.

For the numerical simulation of a mechanical multibody system (MBS), dynamical loads are needed as input data, such as a road profile. With given input quantities, the equations of motion of the system can be integrated. Output quantities for further investigations are calculated from the integration results. In this paper, we consider the corresponding inverse problem: We assume, that a dynamical system and some reference output signals are given. The general task is to derive an input signal, such that the system simulation produces the desired reference output. We present the state-of-the-art method in industrial applications, the iterative learning control method (ILC) and give an application example from automotive industry. Then, we discuss three alternative methods based on optimal control theory for differential algebraic equations (DAEs) and give an overview of their general scheme.

Safety and reliability requirements on the one side and short development cycles, low costs and lightweight design on the other side are two competing aspects of truck engineering. For safety critical components essentially no failures can be tolerated within the target mileage of a truck. For other components the goals are to stay below certain predefined failure rates. Reducing weight or cost of structures often also reduces strength and reliability. The requirements on the strength, however, strongly depend on the loads in actual customer usage. Without sufficient knowledge of these loads one needs large safety factors, limiting possible weight or cost reduction potentials. There are a lot of different quantities influencing the loads acting on the vehicle in actual usage. These ‘influencing quantities’ are, for example, the road quality, the driver, traffic conditions, the mission (long haulage, distribution or construction site), and the geographic region. Thus there is a need for statistical methods to model the load distribution with all its variability, which in turn can be used for the derivation of testing specifications.