## Fraunhofer (ITWM)

### Refine

#### Year of publication

#### Keywords

- A one-dimensional model of the pressing section of a paper machine including dynamic capillary effects (2011)
- This work presents the dynamic capillary pressure model (Hassanizadeh, Gray, 1990, 1993a) adapted for the needs of paper manufacturing process simulations. The dynamic capillary pressure-saturation relation is included in a one-dimensional simulation model for the pressing section of a paper machine. The one-dimensional model is derived from a two-dimensional model by averaging with respect to the vertical direction. Then, the model is discretized by the finite volume method and solved by Newton’s method. The numerical experiments are carried out for parameters typical for the paper layer. The dynamic capillary pressure-saturation relation shows significant influence on the distribution of water pressure. The behaviour of the solution agrees with laboratory experiments (Beck, 1983).

- Finite volume discretization of equations describing nonlinear diffusion in Li-Ion batteries (2010)
- Numerical modeling of electrochemical process in Li-Ion battery is an emerging topic of great practical interest. In this work we present a Finite Volume discretization of electrochemical diffusive processes occurring during the operation of Li-Ion batteries. The system of equations is a nonlinear, time-dependent diffusive system, coupling the Li concentration and the electric potential. The system is formulated at length-scale at which two different types of domains are distinguished, one for the electrolyte and one for the active solid particles in the electrode. The domains can be of highly irregular shape, with electrolyte occupying the pore space of a porous electrode. The material parameters in each domain differ by several orders of magnitude and can be non-linear functions of Li ions concentration and/or the electrical potential. Moreover, special interface conditions are imposed at the boundary separating the electrolyte from the active solid particles. The field variables are discontinuous across such an interface and the coupling is highly non- linear, rendering direct iteration methods ineffective for such problems. We formulate a Newton iteration for an purely implicit Finite Volume discretization of the coupled system. A series of numerical examples are presented for different type of electrolyte/electrode configurations and material parameters. The convergence of the Newton method is characterized both as function of nonlinear material parameters as well as the nonlinearity in the interface conditions.

- Modeling of species and charge transport in Li-Ion Batteries based on non-equilibrium thermodynamics (2010)
- In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the active particle as well as their coupling due to the electrochemical reactions at the interfaces between the electrode particles and the electrolyte will inuence the performance and the lifetime of a battery. Any modeling of the complex phenomena during the usage of a battery has therefore to be based on sound physical and chemical principles in order to allow for reliable predictions for the response of the battery to changing load conditions. We will present a modeling approach for the transport processes in the electrolyte and the electrodesbased on non-equilibrium thermodynamics and transport theory. The assumption of local charge neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the independent thermodynamic variables and uxes. The theory guarantees strictly positive entropy production. Dierences to other theories will be discussed.

- On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations (2010)
- This paper discusses a numerical subgrid resolution approach for solving the Stokes-Brinkman system of equations, which is describing coupled ow in plain and in highly porous media. Various scientic and industrial problems are described by this system, and often the geometry and/or the permeability vary on several scales. A particular target is the process of oil ltration. In many complicated lters, the lter medium or the lter element geometry are too ne to be resolved by a feasible computational grid. The subgrid approach presented in the paper is aimed at describing how these ne details are accounted for by solving auxiliary problems in appropriately chosen grid cells on a relatively coarse computational grid. This is done via a systematic and a careful procedure of modifying and updating the coecients of the Stokes-Brinkman system in chosen cells. This numerical subgrid approach is motivated from one side from homogenization theory, from which we borrow the formulations for the so called cell problem, and from the other side from the numerical upscaling approaches, such as Multiscale Finite Volume, Multiscale Finite Element, etc. Results on the algorithm's eciency, both in terms of computational time and memory usage, are presented. Comparison with solutions on full ne grid (when possible) are presented in order to evaluate the accuracy. Advantages and limitations of the considered subgrid approach are discussed.

- Variational multiscale Finite Element Method for flows in highly porous media (2010)
- We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations byWang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “resonance error” and to ensure convergence to the global fine solution the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems.

- Design of pleated filters by computer simulations (2009)
- Four aspects are important in the design of hydraulic lters. We distinguish between two cost factors and two performance factors. Regarding performance, filter eciencynd lter capacity are of interest. Regarding cost, there are production considerations such as spatial restrictions, material cost and the cost of manufacturing the lter. The second type of cost is the operation cost, namely the pressure drop. Albeit simulations should and will ultimately deal with all 4 aspects, for the moment our work is focused on cost. The PleatGeo Module generates three-dimensional computer models of a single pleat of a hydraulic lter interactively. PleatDict computes the pressure drop that will result for the particular design by direct numerical simulation. The evaluation of a new pleat design takes only a few hours on a standard PC compared to days or weeks used for manufacturing and testing a new prototype of a hydraulic lter. The design parameters are the shape of the pleat, the permeabilities of one or several layers of lter media and the geometry of a supporting netting structure that is used to keep the out ow area open. Besides the underlying structure generation and CFD technology, we present some trends regarding the dependence of pressure drop on design parameters that can serve as guide lines for the design of hydraulic lters. Compared to earlier two-dimensional models, the three-dimensional models can include a support structure.

- A Graph-Laplacian approach for calculating the effective thermal conductivity of complicated fiber geometries (2008)
- Abstract. An efficient approach to the numerical upscaling of thermal conductivities of fibrous media, e.g. insulation materials, is considered. First, standard cell problems for a second order elliptic equation are formulated for a proper piece of random fibrous structure, following homogenization theory. Next, a graph formed by the fibers is considered, and a second order elliptic equation with suitable boundary conditions is solved on this graph only. Replacing the boundary value problem for the full cell with an auxiliary problem with special boundary conditions on a connected subdomain of highly conductive material is justified in a previous work of the authors. A discretization on the graph is presented here, and error estimates are provided. The efficient implementation of the algorithm is discussed. A number of numerical experiments is presented in order to illustrate the performance of the proposed method.

- An efficient approach for upscaling properties of composite materials with high contrast of coefficients (2007)
- An efficient approach for calculating the effective heat conductivity for a class of industrial composite materials, such as metal foams, fibrous glass materials, and the like, is discussed. These materials, used in insulation or in advanced heat exchangers, are characterized by a low volume fraction of the highly conductive material (glass or metal) having a complex, network-like structure and by a large volume fraction of the insulator (air). We assume that the composite materials have constant macroscopic thermal conductivity tensors, which in principle can be obtained by standard up-scaling techniques, that use the concept of representative elementary volumes (REV), i.e. the effective heat conductivities of composite media can be computed by post-processing the solutions of some special cell problems for REVs. We propose, theoretically justify, and numerically study an efficient approach for calculating the effective conductivity for media for which the ratio of low and high conductivities satisfies 1. In this case one essentially only needs to solve the heat equation in the region occupied by the highly conductive media. For a class of problems we show, that under certain conditions on the microscale geometry, the proposed approach produces an upscaled conductivity that is O() close to the exact upscaled permeability. A number of numerical experiments are presented in order to illustrate the accuracy and the limitations of the proposed method. Applicability of the presented approach to upscaling other similar problems, e.g. flow in fractured porous media, is also discussed.

- An analysis of one regularization approach for solution of pure Neumann problem (2008)
- In this paper, the analysis of one approach for the regularization of pure Neumann problems for second order elliptical equations, e.g., Poisson’s equation and linear elasticity equations, is presented. The main topic under consideration is the behavior of the condition number of the regularized problem. A general framework for the analysis is presented. This allows to determine a form of regularization term which leads to the “natural” asymptotic of the condition number of the regularized problem with respect to mesh parameter. Some numerical results, which support theoretical analysis are presented as well. The main motivation for the presented research is to develop theoretical background for an efficient and robust implementation of the solver for pure Neumann problems for the linear elasticity equations. Such solvers usually are needed in a number of domain decomposition methods, e.g. FETI. Developed approaches are planed to be used in software, developing in ITWM, e.g. KneeMech simulation software.

- On two-level preconditioners for flow in porous media (2007)
- Two-level domain decomposition preconditioner for 3D flows in anisotropic highly heterogeneous porous media is presented. Accurate finite volume discretization based on multipoint flux approximation (MPFA) for 3D pressure equation is employed to account for the jump discontinuities of full permeability tensors. DD/MG type preconditioner for above mentioned problem is developed. Coarse scale operator is obtained from a homogenization type procedure. The influence of the overlapping as well as the influence of the smoother and cell problem formulation is studied. Results from numerical experiments are presented and discussed.