## Fraunhofer (ITWM)

### Refine

#### Year of publication

#### Document Type

- Report (198)
- Preprint (19)
- Doctoral Thesis (4)
- Working Paper (1)

#### Keywords

- numerical upscaling (7)
- Integer programming (4)
- hub location (4)
- Darcy’s law (3)
- Heston model (3)
- Lagrangian mechanics (3)
- effective heat conductivity (3)
- facility location (3)
- non-Newtonian flow in porous media (3)
- optimization (3)
- poroelasticity (3)
- virtual material design (3)
- American options (2)
- Bartlett spectrum (2)
- HJB equation (2)
- Heuristics (2)
- IMRT planning (2)
- Kalman filtering (2)
- Kinetic Schemes (2)
- Lattice Boltzmann methods (2)
- Logistics (2)
- MAC type grid (2)
- Navier-Stokes equations (2)
- Noether’s theorem (2)
- Nonlinear multigrid (2)
- Portfolio optimisation (2)
- Rotational spinning process (2)
- Slender body theory (2)
- Special Cosserat rods (2)
- Supply Chain Management (2)
- adaptive refinement (2)
- asymptotic homogenization (2)
- branch and cut (2)
- discontinuous coefficients (2)
- discrete mechanics (2)
- domain decomposition (2)
- energy minimization (2)
- facets (2)
- fast Fourier transform (2)
- fatigue (2)
- fiber orientation (2)
- fiber-fluid interaction (2)
- filling processes (2)
- finite volume method (2)
- finite-volume method (2)
- free-surface phenomena (2)
- hydraulics (2)
- image analysis (2)
- image processing (2)
- injection molding (2)
- integer programming (2)
- interface boundary conditions (2)
- linear elasticity (2)
- model reduction (2)
- multibody dynamics (2)
- multigrid (2)
- multilayered material (2)
- non-overlapping constraints (2)
- numerical simulation (2)
- optimal control (2)
- option pricing (2)
- porous media (2)
- portfolio choice (2)
- power spectrum (2)
- rectangular packing (2)
- simulation (2)
- single phase flow (2)
- software development (2)
- stochastic control (2)
- supply chain management (2)
- valid inequalities (2)
- work effort (2)
- 3D (1)
- 3d imaging (1)
- : Navier-Stokes equations (1)
- : Two-phase flow in porous media (1)
- : multiple criteria optimization (1)
- : multiple objective programming (1)
- Aktien (1)
- Analysis (1)
- Anisotropic Gaussian filter (1)
- Approximation (1)
- Assigment (1)
- Asymptotic Expansion (1)
- Asymptotic expansions (1)
- Asymptotic homogenization (1)
- Ausfallwahrscheinlichkeit (1)
- Automatic Differentiation (1)
- Bauindustrie (1)
- Bauplanung (1)
- Bayesian Model Averaging (1)
- Betriebsfestigkeit (1)
- Bingham viscoplastic model (1)
- Biot poroelasticity system (1)
- Black–Scholes approach (1)
- Blocked Neural Networks (1)
- Boolean polynomials (1)
- Bootstrap (1)
- Boundary Value Problem (1)
- Brinkman (1)
- Brinkman equations (1)
- Börse (1)
- CAD (1)
- CAE-Kette zur Strukturoptimierung (1)
- CFD (1)
- CIR model (1)
- Capacitated Hub Location (1)
- Capacity decisions (1)
- Chapman Enskog distributions (1)
- Code Inspection (1)
- Complexity theory (1)
- Computational Fluid Dynamics (1)
- Computer Assisted Tomograp (1)
- Constant Maturity Credit Default Swap (1)
- Constrained mechanical systems (1)
- Constraint Programming (1)
- Continuous Location (1)
- Cosserat rod (1)
- Credit Default Swaption (1)
- Crofton's intersection formulae (1)
- Curved viscous fibers (1)
- Customer distribution (1)
- Datenerfassung und -auswertung (1)
- Decision support systems (1)
- Delaunay Triangulation (1)
- Delaunay mesh generation (1)
- Design (1)
- Discrete linear systems (1)
- Distortion measure (1)
- Domain Decomposition (1)
- Dynamical Coupling (1)
- Elastic BVP (1)
- Electrophysiology (1)
- Elliptic boundary value problems (1)
- Energie (1)
- Equicofactor matrix polynomials (1)
- Euler number (1)
- Eulerian-Lagrangian formulation (1)
- Existence of Solutions (1)
- FEM (1)
- FETI (1)
- FPM (1)
- Facility location (1)
- Fahrzeugprüfstände (1)
- Fault Prediction (1)
- Festigkeitsverteilung (1)
- Filtering (1)
- Finanzmathematik (1)
- Finite Dominating Sets (1)
- Finite rotations (1)
- Flexible multibody dynamics (1)
- Flooding (1)
- Fluid Structure Interaction (1)
- Fluid dynamics (1)
- Fokker-Planck Equation (1)
- Fokker-Planck equations (1)
- Folgar-Tucker equation (1)
- Folgar-Tucker model (1)
- Forschung (1)
- Free boundary value problem (1)
- Front Propagation (1)
- G2++ model (1)
- Generalized LBE (1)
- Geographical Information Systems (1)
- Geometric (1)
- Gießprozesssimulation (1)
- Gießtechnische Restriktionen (1)
- Gradual Covering (1)
- Greedy Algorithm (1)
- Grid Generation (1)
- Grid Graphs (1)
- Gröber basis (1)
- HJM (1)
- Hadwiger's recursive de nition of the Euler number (1)
- Hankel matrix (1)
- Hedge funds (1)
- Heuristic (1)
- Hilbert transform (1)
- Home Health Care (1)
- Hub Location (1)
- Hull White model (1)
- Human resource modeling (1)
- Hydraulik (1)
- IMRT planning on adaptive volume structures – a significant advance of computational complexity (1)
- Incompressible Navier-Stokes equations (1)
- Infiltration (1)
- Iterative learning control (1)
- Jiang’s Model of Elastoplasticity (1)
- Kalman Filter (1)
- Kirchhoff and Cosserat rods (1)
- Kirchhoff\\\'s geometrically theory (1)
- Knowledge Extraction (1)
- Konfidenz (1)
- Kundenbeanspruchung (1)
- LIBOR market model (1)
- Lagrange formalism (1)
- Large deformations (1)
- Lattice Boltzmann (1)
- Lattice Boltzmann Method (1)
- Lattice Boltzmann method (1)
- Lattice Boltzmann models (1)
- Lattice-Boltzmann method (1)
- Least squares approximation (1)
- Least squares method (1)
- Lebensdauerberechnung (1)
- Lehre (1)
- Lehrerweiterbildung (1)
- Level Set method (1)
- Level-Set Methode (1)
- Li Ion Batteries (1)
- Linear Programming (1)
- Liquid Polymer Moulding (1)
- Load Balancing (1)
- MBS (1)
- MBS simulation (1)
- MILP formulations (1)
- MIP formulations (1)
- MKS (1)
- Mathematical modeling (1)
- Mathematikunterricht (1)
- Matrix perturbation theory (1)
- Maximum-Likelihood (1)
- Mehrskalenanalyse (1)
- Melt spinning (1)
- Mesh-less methods (1)
- Meshfree Method (1)
- Meshfree method (1)
- Metaheuristics (1)
- Model reduction (1)
- Modeling (1)
- Modelling (1)
- Monte Carlo methods (1)
- Monte-Carlo methods (1)
- Multibody simulation (1)
- Multicriteria decision making (1)
- Multipoint flux approximation (1)
- Multiscale problem (1)
- Multiscale problems (1)
- Multiscale structures (1)
- Navier-Stokes (1)
- Navier-Stokes equation (1)
- Navier-Stokes-Brinkmann system of equations (1)
- Network Location (1)
- Network design (1)
- Networks (1)
- Neumann problem (1)
- Non-Newtonian flow (1)
- Non-homogeneous Poisson Process (1)
- Nonequilibrium Thermodynamics (1)
- Nonlinear Regression (1)
- Nonlinear energy (1)
- Numerical modeling (1)
- Nutzungsprofil (1)
- Optimal parameter estimation (1)
- Optimization (1)
- Option pricing (1)
- Optionen (1)
- Ordered Median Function (1)
- Ornstein-Uhlenbeck Process (1)
- Order of printed copy (1)
- Parallel Programming (1)
- Parameter Identification (1)
- Parametrisation of rotations (1)
- Parsimonious Heston Model (1)
- Parteto surface (1)
- Particle scheme (1)
- Performance of iterative solvers (1)
- Pleated Filter (1)
- Poisson equation (1)
- Poisson line process (1)
- Polyhedral Gauges (1)
- Portfolio-Optimierung (1)
- Preconditioners (1)
- Projection method (1)
- Projektplanung (1)
- Prüfkonzepte (1)
- Quanto option (1)
- Random set (1)
- Realization theory (1)
- Recycling (1)
- Regelung (1)
- Reliability Prediction (1)
- Ripley’s K function (1)
- Robust reliability (1)
- Rosenbrock methods (1)
- Rotational Fiber Spinning (1)
- Rounding (1)
- Route Planning (1)
- SIMPLE (1)
- Sandwich Algorithm (1)
- Scheduling (1)
- Shapley Value (1)
- Sheet ofPaper (1)
- Simulation (1)
- Solid-Gas Separation (1)
- Solid-Liquid Separation (1)
- Spatial Binary Images (1)
- Stationary heat equation (1)
- Stein equation (1)
- Stochastic Differential Equations (1)
- Stokes-Brinkman equations (1)
- Stress-strain correction (1)
- Stromnetz (1)
- Stromverbrauch (1)
- Strömungsmechanik (1)
- Supply Chain Design (1)
- Switching regression model (1)
- Thermal Transport (1)
- Topologieoptimierung (1)
- Unstructured Grid (1)
- VCG payment scheme (1)
- Vasicek model (1)
- Vehicle test rigs (1)
- Viscous Fibers (1)
- Weibull (1)
- Winner Determination Problem (WDP) (1)
- a posteriori error estimates (1)
- a-priori domain decomposition (1)
- acoustic absorption (1)
- adaptive local refinement (1)
- adaptive triangulation (1)
- additive outlier (1)
- aerodynamic drag (1)
- air drag (1)
- algebraic constraints (1)
- algebraic cryptoanalysis (1)
- algorithm by Bortfeld and Boyer (1)
- analog circuits (1)
- angewandte Mathematik (1)
- anisotropic cicosity (1)
- anisotropy (1)
- applied mathematics (1)
- artial differential algebraic equations (1)
- asymptotic (1)
- asymptotic Cosserat models (1)
- asymptotic limits (1)
- automated analog circuit design (1)
- batch presorting problem (1)
- battery modeling (1)
- behavioral modeling (1)
- ber dynamics (1)
- big triangle small triangle method (1)
- binarization (1)
- boudary condistions (1)
- bounce-back rule (1)
- boundary value problems (1)
- bounds (1)
- calibration (1)
- calls (1)
- cancer (1)
- cell volume (1)
- center and median problems (1)
- circuit sizing (1)
- cliquet options (1)
- clustering (1)
- clustering and disaggregation techniques (1)
- combinatorial procurement (1)
- competetive analysis (1)
- composite materials (1)
- compressible Navier Stokes equations (1)
- computational fluid dynamics (1)
- computer algebra (1)
- concentrated electrolyte (1)
- constrained mechanical systems (1)
- constraint propagation (1)
- consumption (1)
- contact problems (1)
- continuous optimization (1)
- control (1)
- controlling (1)
- convergence of approximate solution (1)
- convex (1)
- convex models (1)
- convex optimization (1)
- corre- lation (1)
- correlation (1)
- coupled flow in plain and porous media (1)
- crack diagnosis (1)
- credit risk (1)
- credit spread (1)
- cuboidal lattice (1)
- curved viscous fibers (1)
- curved viscous fibers with surface tension (1)
- damage diagnosis (1)
- decision support systems (1)
- decomposition (1)
- defect detection (1)
- deformable bodies (1)
- deformable porous media (1)
- design centering (1)
- design optimization (1)
- deterministic technical systems (1)
- dial-a-ride (1)
- dif (1)
- differential algebraic equations (1)
- differentialalgebraic equations (1)
- discrete equilibrium distributions (1)
- discrete facility location (1)
- discrete location (1)
- discrete optimization (1)
- discretisation of control problems (1)
- discriminant analysis (1)
- diusion limits (1)
- dividend discount model (1)
- dividends (1)
- drag models (1)
- drift due to noise (1)
- dynamic capillary pressure (1)
- dynamic mode (1)
- edge detection (1)
- effective elastic moduli (1)
- effective thermal conductivity (1)
- efficient set (1)
- elastoplastic BVP (1)
- electrochemical diusive processes (1)
- electrochemical simulation (1)
- electronic circuit design (1)
- elliptic equation (1)
- energy conservation (1)
- error estimates (1)
- estimation of compression (1)
- evolutionary algorithms (1)
- executive compensation (1)
- executive stockholder (1)
- expert system (1)
- explicit jump (1)
- explicit jump immersed interface method (1)
- exponential utility (1)
- extreme solutions (1)
- fiber dynamics (1)
- fiber model (1)
- fiber-fluid interactions (1)
- fiber-turbulence interaction scales (1)
- fibrous insulation materials (1)
- fibrous materials (1)
- film casting process (1)
- filtration (1)
- financial decisions (1)
- finite difference discretization (1)
- finite differences (1)
- finite element method (1)
- finite elements (1)
- finite sample breakdown point (1)
- finite volume discretization (1)
- finite volume discretization discretization (1)
- finite volume discretizations (1)
- finite volume methods (1)
- flexible bodies (1)
- flexible fibers (1)
- flow in heterogeneous porous media (1)
- flow in porous media (1)
- flow resistivity (1)
- flows (1)
- fluid-fiber interactions (1)
- fluid-structure interaction (1)
- force-based simulation (1)
- formal verification (1)
- forward starting options (1)
- frameindifference (1)
- free boundary value problem (1)
- free surface (1)
- free surface Stokes flow (1)
- full vehicle model (1)
- functional Hilbert space (1)
- fuzzy logic (1)
- general semi-infinite optimization (1)
- generalized Pareto distribution (1)
- genetic algorithms (1)
- geographical information systems (1)
- geometrically exact rod models (1)
- geometrically exact rods (1)
- glass processing (1)
- global optimization (1)
- global pressure (1)
- global robustness (1)
- graph laplacian (1)
- heterogeneous porous media (1)
- heuristic (1)
- heuristics (1)
- hierarchical shape functions (1)
- human factors (1)
- human visual system (1)
- hyperealstic (1)
- image segmentation (1)
- impinging jets (1)
- improving and feasible directions (1)
- in-house hospital transportation (1)
- incompressible flow (1)
- inertial and viscous-inertial fiber regimes (1)
- inhomogeneous Helmholtz type differential equations in bounded domains (1)
- innovation outlier (1)
- integral constitutive equation (1)
- intensity maps (1)
- intensity modulated (1)
- intensity modulated radiotherapy planning (1)
- interactive multi-objective optimization (1)
- interactive navigation (1)
- interfa (1)
- interface problem (1)
- interface problems (1)
- interval arithmetic (1)
- invariant excitation (1)
- invariants (1)
- inverse mathematical models (1)
- ion transport (1)
- isotropy test (1)
- kernel estimate (1)
- kernel function (1)
- kinetic derivation (1)
- knowledge management (1)
- knowledge representation (1)
- large scale optimization (1)
- lattice Boltzmann equation (1)
- learning curve (1)
- level-set (1)
- lid-driven flow in a (1)
- linear elasticity equations (1)
- linear filtering (1)
- linear kinematic hardening (1)
- liquid composite moulding (1)
- liquid film (1)
- lithium-ion battery (1)
- local robustness (1)
- locational analysis (1)
- log utility (1)
- logistic regression (1)
- logistics (1)
- long slender fibers (1)
- macro modeling (1)
- macroscopic equations (1)
- mass & spring (1)
- maximal function (1)
- mbs simulation (1)
- metal foams (1)
- microstructure simulatio (1)
- microstructure simulation (1)
- modelling (1)
- models (1)
- modified gradient projection method (1)
- moment matching (1)
- multi-asset (1)
- multi-hypothesis diagnosis (1)
- multi-period planning (1)
- multi-stage stochastic programming (1)
- multibody system simulation (1)
- multicriteria optimization (1)
- multigrid methods (1)
- multiobjective evolutionary algorithms (1)
- multiphase flow (1)
- multiphase mixture model (1)
- multiple objective linear programming problem (1)
- multiscale problem (1)
- multiscale problems (1)
- multiscale structures (1)
- multivalued fundamental diagram (1)
- nD image processing (1)
- nearest neighbour distance (1)
- neighborhod relationships (1)
- non-Newtonian fluids (1)
- non-linear dynamics (1)
- non-linear optimization (1)
- non-linear wealth dynamics (1)
- non-local conditions (1)
- non-woven (1)
- nonlinear algorithms (1)
- nonlinear diffusion (1)
- nonlinear model reduction (1)
- nonlinear programming (1)
- nonlinear stochastic systems (1)
- nonlinearity (1)
- numerical methods (1)
- numerical solution (1)
- occupational choice (1)
- oil filters (1)
- on-board simulation (1)
- online optimization (1)
- open cell foam (1)
- operator-dependent prolongation (1)
- optimal control theory (1)
- optimal portfolio choice (1)
- optimization algorithms (1)
- optimization strategies (1)
- options (1)
- ordered median (1)
- orientation analysis (1)
- orientation space (1)
- orthogonal orientations (1)
- oscillating coefficients (1)
- pH-sensitive microelectrodes (1)
- paper machine (1)
- parallel computing (1)
- parallel implementation (1)
- parametric (1)
- particle methods (1)
- path-connected sublevelsets (1)
- permeability of fractured porous media (1)
- phase space (1)
- phase transitions (1)
- planar location (1)
- polar ice (1)
- political districting (1)
- polynomial algorithms (1)
- porous microstructure (1)
- power utility (1)
- preconditioner (1)
- pressing section of a paper machine (1)
- productivity (1)
- project management and scheduling (1)
- projection-type splitting (1)
- pseudo-compressibility method (1)
- pseudo-plastic fluids (1)
- public transit (1)
- public transport (1)
- puts (1)
- quadratic assignment problem (1)
- quantile estimation (1)
- quasistatic deformations (1)
- radiation therapy (1)
- radiation therapy planning (1)
- radiotherapy planning (1)
- random -Gaussian aerodynamic force (1)
- random set (1)
- random system of fibers (1)
- rate-indepenhysteresis (1)
- real-life applications. (1)
- real-time (1)
- real-time simulation (1)
- real-world accident data (1)
- regularization (1)
- regularized models (1)
- representative systems of Pareto solutions (1)
- reproducing kernel (1)
- risk (1)
- robustness (1)
- rotating machinery (1)
- rotational spinning processes (1)
- safety critical components (1)
- safety function (1)
- sales territory alignment (1)
- satisfiability (1)
- semi-infinite programming (1)
- separable filters (1)
- sequences (1)
- shape (1)
- shape optimization (1)
- sharp function (1)
- sicherheitsrelevante Bauteile (1)
- singularity (1)
- slender- body theory (1)
- slender-body theory (1)
- slenderbody theory (1)
- smoothness (1)
- software process (1)
- software tools (1)
- spinning processes (1)
- stability (1)
- statistical modeling (1)
- steady Richards’ equation (1)
- steady modified Richards’ equation (1)
- stochastic Hamiltonian system (1)
- stochastic averaging. (1)
- stochastic dif (1)
- stochastic volatility (1)
- stokes (1)
- stop and go waves (1)
- stop- and play-operator (1)
- strategic (1)
- strength (1)
- strut thickness (1)
- subgrid approach (1)
- subgrid approximation (1)
- suspension (1)
- swap (1)
- symbolic analysis (1)
- system simulation (1)
- tabu search (1)
- technology (1)
- territory desgin (1)
- testing philosophy (1)
- textile quality control (1)
- texture classification (1)
- thin films (1)
- tolerance analysis (1)
- topological sensitivity (1)
- topology optimization (1)
- tr (1)
- trace stability (1)
- traffic flow (1)
- transfer quality (1)
- transportation (1)
- treatment planning (1)
- tree method (1)
- turbulence modeling (1)
- turbulence modelling (1)
- two-grid algorithm (1)
- two-way coupling (1)
- unstructured grid (1)
- upscaling (1)
- urban elevation (1)
- variable aggregation method (1)
- variable cardinality case (1)
- variable neighborhood search (1)
- variational formulation (1)
- variational inequalities (1)
- various formulations (1)
- viscous thermal jets (1)
- visual (1)
- visual interfaces (1)
- visualization (1)
- volatility (1)
- volume of fluid method (1)
- wave based method (1)
- white noise (1)
- wild bootstrap test (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (222)
- Fachbereich Mathematik (2)

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

The lowest resonant frequency of a cavity resonator is usually approximated by the classical Helmholtz formula. However, if the opening is rather large and the front wall is narrow this formula is no longer valid. Here we present a correction which is of third order in the ratio of the diameters of aperture and cavity. In addition to the high accuracy it allows to estimate the damping due to radiation. The result is found by applying the method of matched asymptotic expansions. The correction contains form factors describing the shapes of opening and cavity. They are com- puted for a number of standard geometries. Results are compared with numerical computations.

In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ signal-based as well as model-based procedures for an improved detection of size and location of the damage. In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope and the instantaneous frequency, so that various types of non-linearities due to a damage may be identified and classified based on measured response data. In a second step, a multi-hypothesis bank of Kalman Filters is employed for the detection of the size and location of the damage based on the information of the type of damage provided by the results of the Hilbert transform.

Robust Reliability of Diagnostic Multi-Hypothesis Algorithms: Application to Rotating Machinery
(1998)

Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their resulting dynamic effects. First, we formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of the diagnostic algorithm for the maximization of the reliability. The reliability of a diagnostic algorithm is measured by the amount of uncertainty consistent with no-failure of the diagnosis. Uncertainty is quantitatively represented with convex models.

For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable mathematical methods are needed to handle such problems optimal using workstation class computers. Since the exact solution would require super-computer capabilities we concentrate on approximate solutions with a high degree of accuracy. The following approaches are studied: 3D diffusion approximations and 3D ray-tracing methods.

In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there.

In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail.

In this paper domain decomposition methods for radiative transfer problems including conductive heat transfer are treated. The paper focuses on semi-transparent materials, like glass, and the associated conditions at the interface between the materials. Using asymptotic analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion approximation. Several test cases are treated and a problem appearing in glass manufacturing processes is computed. The results clearly show the advantages of a domain decomposition approach. Accuracy equivalent to the solution of the global radiative transfer solution is achieved, whereas computation time is strongly reduced.

A new approach is proposed to model and simulate numerically heterogeneous catalysis in rarefied gas flows. It is developed to satisfy all together the following points: i) describe the gas phase at the microscopic scale, as required in rarefied flows, ii) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not only crystalline but also amorphous surfaces, iii) reproduce on average macroscopic laws correlated with experimental results and iv) derive ana- lytic models in a systematic and exact way. The problem is stated in the general framework of a non static flow in the vicinity of a catalytic and non porous surface (without ageing). It is shown that the exact and systematic resolution method based on the Laplace transform, introduced previously by the author to model collisions in the gas phase, can be extended to the present problem. The proposed approach is applied to the modelling of the Eley-Rideal and Langmuir-Hinshelwood recombinations, assuming that the coverage is locally at equilibrium. The models are developed considering one atomic species and extended to the gen eral case of several atomic species. Numerical calculations show that the models derived in this way reproduce with accuracy behaviours observed experimentally.

A new method of determining some characteristics of binary images is proposed based on a special linear filtering. This technique enables the estimation of the area fraction, the specific line length, and the specific integral of curvature. Furthermore, the specific length of the total projection is obtained, which gives detailed information about the texture of the image. The influence of lateral and directional resolution depending on the size of the applied filter mask is discussed in detail. The technique includes a method of increasing directional resolution for texture analysis while keeping lateral resolution as high as possible.

A multi-phase composite with periodic distributed inclusions with a smooth boundary is considered in this contribution. The composite component materials are supposed to be linear viscoelastic and aging (of the non-convolution integral type, for which the Laplace transform with respect to time is not effectively applicable) and are subjected to isotropic shrinkage. The free shrinkage deformation can be considered as a fictitious temperature deformation in the behavior law. The procedure presented in this paper proposes a way to determine average (effective homogenized) viscoelastic and shrinkage (temperature) composite properties and the homogenized stress-field from known properties of the components. This is done by the extension of the asymptotic homogenization technique known for pure elastic non-homogeneous bodies to the non-homogeneous thermo-viscoelasticity of the integral non-convolution type. Up to now, the homogenization theory has not covered viscoelasticity of the integral type. Sanchez-Palencia (1980), Francfort & Suquet (1987) (see [2], [9]) have consid- ered homogenization for viscoelasticity of the differential form and only up to the first derivative order. The integral-modeled viscoelasticity is more general then the differential one and includes almost all known differential models. The homogenization procedure is based on the construction of an asymptotic solution with respect to a period of the composite structure. This reduces the original problem to some auxiliary boundary value problems of elasticity and viscoelasticity on the unit periodic cell, of the same type as the original non-homogeneous problem. The existence and uniqueness results for such problems were obtained for kernels satisfying some constrain conditions. This is done by the extension of the Volterra integral operator theory to the Volterra operators with respect to the time, whose 1 kernels are space linear operators for any fixed time variables. Some ideas of such approach were proposed in [11] and [12], where the Volterra operators with kernels depending additionally on parameter were considered. This manuscript delivers results of the same nature for the case of the space-operator kernels.

Finding "good" cycles in graphs is a problem of great interest in graph theory as well as in locational analysis. We show that the center and median problems are NP hard in general graphs. This result holds both for the variable cardinality case (i.e. all cycles of the graph are considered) and the fixed cardinality case (i.e. only cycles with a given cardinality p are feasible). Hence it is of interest to investigate special cases where the problem is solvable in polynomial time. In grid graphs, the variable cardinality case is, for instance, trivially solvable if the shape of the cycle can be chosen freely. If the shape is fixed to be a rectangle one can analyse rectangles in grid graphs with, in sequence, fixed dimension, fixed cardinality, and variable cardinality. In all cases a com plete characterization of the optimal cycles and closed form expressions of the optimal objective values are given, yielding polynomial time algorithms for all cases of center rectangle problems. Finally, it is shown that center cycles can be chosen as rectangles for small cardinalities such that the center cycle problem in grid graphs is in these cases completely solved.

This paper deals with the characterization of microscopically heterogeneous, but macroscopically homogeneous spatial structures. A new method is presented which is strictly based on integral-geometric formulae such as Crofton's intersection formulae and Hadwiger's recursive de nition of the Euler number. The corresponding algorithms have clear advantages over other techniques. As an example of application we consider the analysis of spatial digital images produced by means of Computer Assisted Tomo- graphy.

For some decades radiation therapy has been proved successful in cancer treatment. It is the major task of clinical radiation treatment planning to realise on the one hand a high level dose of radiation in the cancer tissue in order to obtain maximum tumour control. On the other hand it is obvious that it is absolutely necessary to keep in the tissue outside the tumour, particularly in organs at risk, the unavoidable radiation as low as possible. No doubt, these two objectives of treatment planning high level dose in the tumour, low radiation outside the tumour have a basically contradictory nature. Therefore, it is no surprise that inverse mathematical models with dose distribution bounds tend to be infeasible in most cases. Thus, there is need for approximations compromising between overdosing the organs at risk and underdosing the target volume. Differing from the currently used time consuming iterative approach, which measures deviation from an ideal (non-achievable) treatment plan using recursively trial-and-error weights for the organs of interest, we go a new way trying to avoid a priori weight choices and consider the treatment planning problem as a multiple objective linear programming problem: with each organ of interest, target tissue as well as organs at risk, we associate an objective function measuring the maximal deviation from the prescribed doses. We build up a data base of relatively few efficient solutions representing and approximating the variety of Pareto solutions of the multiple objective linear programming problem. This data base can be easily scanned by physicians looking for an adequate treatment plan with the aid of an appropriate online tool.

A general approach to the construction of discrete equilibrium dis- tributions is presented. Such distribution functions can be used to set up Kinetic Schemes as well as Lattice Boltzmann methods. The general principles are also applied to the construction of Chapman Enskog dis- tributions which are used in Kinetic Schemes for compressible Navier Stokes equations.

The relation between the Lattice Boltzmann Method, which has re- cently become popular, and the Kinetic Schemes, which are routinely used in Computational Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier-Stokes equations for incom- pressible uid ow is presented by combining both the approaches. The new scheme can be interpreted as a pseudo-compressibility method and, for a particular choice of parameters, this interpretation carries over to the Lattice Boltzmann Method.

Wicksell's corpuscle problem deals with the estimation of the size distribution of a population of particles, all having the same shape, using a lower imensional sampling probe. This problem was originary formulated for particle systems occurring in life sciences but its solution is of actual and increasing interest in materials science. From a mathematical point of view, Wicksell's problem is an inverse problem where the interesting size distribution is the unknown part of a Volterra equation. The problem is often regarded ill-posed, because the structure of the integrand implies unstable numerical solutions. The accuracy of the numerical solutions is considered here using the condition number, which allows to compare different numerical methods with different (equidistant) class sizes and which indicates, as one result, that a finite section thickness of the probe reduces the numerical problems. Furthermore, the relative error of estimation is computed which can be split into two parts. One part consists of the relative discretization error that increases for increasing class size, and the second part is related to the relative statistical error which increases with decreasing class size. For both parts, upper bounds can be given and the sum of them indicates an optimal class width depending on some specific constants.

It is well-known that some of the classical location problems with polyhedral gauges can be solved in polynomial time by finding a finite dominating set, i.e. a finite set of candidates guaranteed to contain at least one optimal location. In this paper it is first established that this result holds for a much larger class of problems than currently considered in the literature. The model for which this result can be proven includes, for instance, location problems with attraction and repulsion, and location-allocation problems. Next, it is shown that the approximation of general gauges by polyhedral ones in the objective function of our general model can be analyzed with regard to the subsequent error in the optimal objective value. For the approximation problem two different approaches are described, the sandwich procedure and the greedy algorithm. Both of these approaches lead - for fixed epsilon - to polynomial approximation algorithms with accuracy epsilon for solving the general model considered in this paper.

Within this paper we review image distortion measures. A distortion measure is a criterion that assigns a "quality number" to an image. We distinguish between mathematical distortion measures and those distortion measures in-cooperating a priori knowledge about the imaging devices ( e.g. satellite images), image processing algorithms or the human physiology. We will consider representative examples of different kinds of distortion measures and are going to discuss them.

We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet–defining. We show its superior computational performance by benchmarking it on a well known data set.

Given a public transportation system represented by its stops and direct connections between stops, we consider two problems dealing with the prices for the customers: The fare problem in which subsets of stops are already aggregated to zones and "good" tariffs have to be found in the existing zone system. Closed form solutions for the fare problem are presented for three objective functions. In the zone problem the design of the zones is part of the problem. This problem is NP hard and we therefore propose three heuristics which prove to be very successful in the redesign of one of Germany's transportation systems

In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is discretized by restricting it to a discrete set of test functions. In contrast to the usual Finite-Volume approach, the test functions are not taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a partition of unity with smooth and overlapping partition functions (the particles), which can even move along prescribed velocity fields. The information exchange between particles is based on standard numerical flux functions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the corresponding normal directions are given as integral quantities of the partition functions. After a brief derivation of the Finite-Volume-Particle Method, this work focuses on the role of the geometric coefficients in the scheme.

The objective of this paper is to bridge the gap between location theory and practice. To meet this objective focus is given to the development of software capable of addressing the different needs of a wide group of users. There is a very active community on location theory encompassing many research fields such as operations research, computer science, mathematics, engineering, geography, economics and marketing. As a result, people working on facility location problems have a very diverse background and also different needs regarding the software to solve these problems. For those interested in non-commercial applications (e. g. students and researchers), the library of location algorithms (LoLA can be of considerable assistance. LoLA contains a collection of efficient algorithms for solving planar, network and discrete facility location problems. In this paper, a detailed description of the functionality of LoLA is presented. In the fields of geography and marketing, for instance, solving facility location problems requires using large amounts of demographic data. Hence, members of these groups (e. g. urban planners and sales managers) often work with geographical information too s. To address the specific needs of these users, LoLA was inked to a geographical information system (GIS) and the details of the combined functionality are described in the paper. Finally, there is a wide group of practitioners who need to solve large problems and require special purpose software with a good data interface. Many of such users can be found, for example, in the area of supply chain management (SCM). Logistics activities involved in strategic SCM include, among others, facility location planning. In this paper, the development of a commercial location software tool is also described. The too is embedded in the Advanced Planner and Optimizer SCM software developed by SAP AG, Walldorf, Germany. The paper ends with some conclusions and an outlook to future activities.

This paper details models and algorithms which can be applied to evacuation problems. While it concentrates on building evacuation many of the results are applicable also to regional evacuation. All models consider the time as main parameter, where the travel time between components of the building is part of the input and the overall evacuation time is the output. The paper distinguishes between macroscopic and microscopic evacuation models both of which are able to capture the evacuees' movement over time. Macroscopic models are mainly used to produce good lower bounds for the evacuation time and do not consider any individual behavior during the emergency situation. These bounds can be used to analyze existing buildings or help in the design phase of planning a building. Macroscopic approaches which are based on dynamic network flow models (minimum cost dynamic flow, maximum dynamic flow, universal maximum flow, quickest path and quickest flow) are described. A special feature of the presented approach is the fact, that travel times of evacuees are not restricted to be constant, but may be density dependent. Using multicriteria optimization priority regions and blockage due to fire or smoke may be considered. It is shown how the modelling can be done using time parameter either as discrete or continuous parameter. Microscopic models are able to model the individual evacuee's characteristics and the interaction among evacuees which influence their movement. Due to the corresponding huge amount of data one uses simulation approaches. Some probabilistic laws for individual evacuee's movement are presented. Moreover ideas to model the evacuee's movement using cellular automata (CA) and resulting software are presented. In this paper we will focus on macroscopic models and only summarize some of the results of the microscopic approach. While most of the results are applicable to general evacuation situations, we concentrate on building evacuation.

To simulate the influence of process parameters to the melt spinning process a fiber model is used and coupled with CFD calculations of the quench air flow. In the fiber model energy, momentum and mass balance are solved for the polymer mass flow. To calculate the quench air the Lattice Boltzmann method is used. Simulations and experiments for different process parameters and hole configurations are compared and show a good agreement. Keywords: Melt spinning, fiber model, Lattice Boltzmann, CFD.

To simulate the influence of process parameters to the melt spinning process a fiber model is used and coupled with CFD calculations of the quench air flow. In the fiber model energy, momentum and mass balance are solved for the polymer mass flow. To calculate the quench air the Lattice Boltzmann method is used. Simulations and experiments for different process parameters and hole configurations are compared and show a good agreement.

In this paper mathematical models for liquid films generated by impinging jets are discussed. Attention is stressed to the interaction of the liquid film with some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)] found that the liquid film generated by impinging jets is very sensitive to properties of the wire which was used as an obstacle. The aim of this presentation is to propose a modification of the Taylor's model, which allows to simulate the film shape in cases, when the angle between jets is different from 180°. Numerical results obtained by discussed models give two different shapes of the liquid film similar as in Taylors experiments. These two shapes depend on the regime: either droplets are produced close to the obstacle or not. The difference between two regimes becomes larger if the angle between jets decreases. Existence of such two regimes can be very essential for some applications of impinging jets, if the generated liquid film can have a contact with obstacles.

Free Surface Lattice-Boltzmann Method To Model The Filling Of Expanding Cavities By Bingham Fluids
(2001)

The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered as vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.

»Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann«
(2001)

Vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-Pfalz am 21.11.2001 Was macht einen guten Hochschullehrer aus? Auf diese Frage gibt es sicher viele verschiedene, fachbezogene Antworten, aber auch ein paar allgemeine Gesichtspunkte: es bedarf der »Leidenschaft« für die Forschung (Max Weber), aus der dann auch die Begeisterung für die Lehre erwächst. Forschung und Lehre gehören zusammen, um die Wissenschaft als lebendiges Tun vermitteln zu können. Der Vortrag gibt Beispiele dafür, wie in angewandter Mathematik Forschungsaufgaben aus praktischen Alltagsproblemstellungen erwachsen, die in die Lehre auf verschiedenen Stufen (Gymnasium bis Graduiertenkolleg) einfließen; er leitet damit auch zu einem aktuellen Forschungsgebiet, der Mehrskalenanalyse mit ihren vielfältigen Anwendungen in Bildverarbeitung, Materialentwicklung und Strömungsmechanik über, was aber nur kurz gestreift wird. Mathematik erscheint hier als eine moderne Schlüsseltechnologie, die aber auch enge Beziehungen zu den Geistes- und Sozialwissenschaften hat.

A Lagrangian particle scheme is applied to the projection method for the incompressible Navier-Stokes equations. The approximation of spatial derivatives is obtained by the weighted least squares method. The pressure Poisson equation is solved by a local iterative procedure with the help of the least squares method. Numerical tests are performed for two dimensional cases. The Couette flow, Poiseuelle flow, decaying shear flow and the driven cavity flow are presented. The numerical solutions are obtained for stationary as well as instationary cases and are compared with the analytical solutions for channel flows. Finally, the driven cavity in a unit square is considered and the stationary solution obtained from this scheme is compared with that from the finite element method.

Elementare Finanzmathematik
(2002)

Im Rahmen dieser Arbeit soll eine elementar gehaltene Einführung in die Aufgabenstellungen und Prinzipien der modernen Finanzmathematik gegeben werden. Insbesondere werden die Grundlagen der Modellierung von Aktienkursen, der Bewertung von Optionen und der Portfolio-Optimierung vorgestellt. Natürlich können die verwendeten Methoden und die entwickelte Theorie nicht in voller Allgemeinheit für den Schuluntericht verwendet werden, doch sollen einzelne Prinzipien so heraus gearbeitet werden, dass sie auch an einfachen Beispielen verstanden werden können.

In this paper we consider short term storage systems. We analyze presorting strategies to improve the effiency of these storage systems. The presorting task is called Batch PreSorting Problem (BPSP). The BPSP is a variation of an assigment problem, i.e., it has an assigment problem kernel and some additional constraints. We present different types of these presorting problems, introduce mathematical programming formulations and prove the NP-completeness for one type of the BPSP. Experiments are carried out in order to compare the different model formulations and to investigate the behavior of these models.

We consider some portfolio optimisation problems where either the investor has a desire for an a priori specified consumption stream or/and follows a deterministic pay in scheme while also trying to maximize expected utility from final wealth. We derive explicit closed form solutions for continuous and discrete monetary streams. The mathematical method used is classical stochastic control theory.

If an investor borrows money he generally has to pay higher interest rates than he would have received, if he had put his funds on a savings account. The classical model of continuous time portfolio optimisation ignores this effect. Since there is obviously a connection between the default probability and the total percentage of wealth, which the investor is in debt, we study portfolio optimisation with a control dependent interest rate. Assuming a logarithmic and a power utility function, respectively, we prove explicit formulae of the optimal control.

Two approaches for determining the Euler-Poincaré characteristic of a set observed on lattice points are considered in the context of image analysis { the integral geometric and the polyhedral approach. Information about the set is assumed to be available on lattice points only. In order to retain properties of the Euler number and to provide a good approximation of the true Euler number of the original set in the Euclidean space, the appropriate choice of adjacency in the lattice for the set and its background is crucial. Adjacencies are defined using tessellations of the whole space into polyhedrons. In R 3 , two new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies. For the Euler number of a set and its complement, a consistency relation holds. Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair of complementary adjacencies with respect to this relation. That is, the approximations of the Euler numbers are consistent if the set and its background (complement) are equipped with this pair of adjacencies. Furthermore, sufficient conditions for the correctness of the approximations of the Euler number are given. The analysis of selected microstructures and a simulation study illustrate how the estimated Euler number depends on the chosen adjacency. It also shows that there is not a uniquely best pair of adjacencies with respect to the estimation of the Euler number of a set in Euclidean space.

Lattice Boltzmann Model for Free-Surface flow and Its Application to Filling Process in Casting
(2002)

A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial region are constructed according to the first order Chapman-Enskog analysis. The interfacial boundary conditions are satisfied exactly by the coefficients in the Chapman-Enskog expansion. The distribution functions are naturally expressed in the local interfacial coordinates. The macroscopic quantities at the interface are extracted from the least-square solutions of a locally linearized system obtained from the known distribution functions. The proposed method does not require any geometric front construction and is robust for any interfacial topology. Simulation results of realistic filling process are presented: rectangular cavity in two dimensions and Hammer box, Campbell box, Sheffield box, and Motorblock in three dimensions. To enhance the stability at high Reynolds numbers, various upwind-type schemes are developed. Free-slip and no-slip boundary conditions are also discussed.

In the present paper a kinetic model for vehicular traffic leading to multivalued fundamental diagrams is developed and investigated in detail. For this model phase transitions can appear depending on the local density and velocity of the flow. A derivation of associated macroscopic traffic equations from the kinetic equation is given. Moreover, numerical experiments show the appearance of stop and go waves for highway traffic with a bottleneck.

To a network N(q) with determinant D(s;q) depending on a parameter vector q Î Rr via identification of some of its vertices, a network N^ (q) is assigned. The paper deals with procedures to find N^ (q), such that its determinant D^ (s;q) admits a factorization in the determinants of appropriate subnetworks, and with the estimation of the deviation of the zeros of D^ from the zeros of D. To solve the estimation problem state space methods are applied.

A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. Definition and proof of existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khintchine theorem for the power spectrum are used to two ends: First, well known second order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second order characteristics in frequency space. Examples show, that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real world counterparts.

We present a unified approach of several boundary conditions for lattice Boltzmann models. Its general framework is a generalization of previously introduced schemes such as the bounce-back rule, linear or quadratic interpolations, etc. The objectives are two fold: first to give theoretical tools to study the existing boundary conditions and their corresponding accuracy; secondly to design formally third- order accurate boundary conditions for general flows. Using these boundary conditions, Couette and Poiseuille flows are exact solution of the lattice Boltzmann models for a Reynolds number Re = 0 (Stokes limit). Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates and for Navier-Stokes flows in periodic arrays of cylinders for Re < 200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multi-reflection boundary conditions, reaching a level of accuracy close to the quasi-analytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multi-reflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.

In this paper, we present a novel multicriteria decision support system (MCDSS), called knowCube, consisting of components for knowledge organization, generation, and navigation. Knowledge organization rests upon a database for managing qualitative and quantitative criteria, together with add-on information. Knowledge generation serves filling the database via e.g. identification, optimization, classification or simulation. For “finding needles in haycocks”, the knowledge navigation component supports graphical database retrieval and interactive, goal-oriented problem solving. Navigation “helpers” are, for instance, cascading criteria aggregations, modifiable metrics, ergonomic interfaces, and customizable visualizations. Examples from real-life projects, e.g. in industrial engineering and in the life sciences, illustrate the application of our MCDSS.

This paper concerns numerical simulation of flow through oil filters. Oil filters consist of filter housing (filter box), and a porous filtering medium, which completely separates the inlet from the outlet. We discuss mathematical models, describing coupled flows in the pure liquid subregions and in the porous filter media, as well as interface conditions between them. Further, we reformulate the problem in fictitious regions method manner, and discuss peculiarities of the numerical algorithm in solving the coupled system. Next, we show numerical results, validating the model and the algorithm. Finally, we present results from simulation of 3-D oil flow through a real car filter.

On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media A multigrid adaptive refinement algorithm for non-Newtonian flow in porous media is presented. The saturated flow of a non-Newtonian fluid is described by the continuity equation and the generalized Darcy law. The resulting second order nonlinear elliptic equation is discretized by a finite volume method on a cell-centered grid. A nonlinear full-multigrid, full-approximation-storage algorithm is implemented. As a smoother, a single grid solver based on Picard linearization and Gauss-Seidel relaxation is used. Further, a local refinement multigrid algorithm on a composite grid is developed. A residual based error indicator is used in the adaptive refinement criterion. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Several results from numerical experiments are presented in order to examine the performance of the solver.

We consider the problem of pricing European forward starting options in the presence of stochastic volatility. By performing a change of measure using the asset price at the time of strike determination as a numeraire, we derive a closed-form solution based on Heston’s model of stochastic volatility.

A non-linear multigrid solver for incompressible Navier-Stokes equations, exploiting finite volume discretization of the equations, is extended by adaptive local refinement. The multigrid is the outer iterative cycle, while the SIMPLE algorithm is used as a smoothing procedure. Error indicators are used to define the refinement subdomain. A special implementation approach is used, which allows to perform unstructured local refinement in conjunction with the finite volume discretization. The multigrid - adaptive local refinement algorithm is tested on 2D Poisson equation and further is applied to a lid-driven flows in a cavity (2D and 3D case), comparing the results with bench-mark data. The software design principles of the solver are also discussed.

In first part of this work, summaries of traditional Multiphase Flow Model and more recent Multiphase Mixture Model are presented. Attention is being paid to attempts include various heterogeneous aspects into models. In second part, MMM based differential model for two-phase immiscible flow in porous media is considered. A numerical scheme based on the sequential solution procedure and control volume based finite difference schemes for the pressure and saturation-conservation equations is developed. A computer simulator is built, which exploits object-oriented programming techniques. Numerical result for several test problems are reported.

One of the main goals of an organization developing software is to increase the quality of the software while at the same time to decrease the costs and the duration of the development process. To achieve this, various decisions e.ecting this goal before and during the development process have to be made by the managers. One appropriate tool for decision support are simulation models of the software life cycle, which also help to understand the dynamics of the software development process. Building up a simulation model requires a mathematical description of the interactions between di.erent objects involved in the development process. Based on experimental data, techniques from the .eld of knowledge discovery can be used to quantify these interactions and to generate new process knowledge based on the analysis of the determined relationships. In this paper blocked neuronal networks and related relevance measures will be presented as an appropriate tool for quanti.cation and validation of qualitatively known dependencies in the software development process.

The objective of the present article is to give an overview of an application of Fuzzy Logic in Regulation Thermography, a method of medical diagnosis support. An introduction to this method of the complementary medical science based on temperature measurements – so-called thermograms – is provided. The process of modelling the physician’s thermogram evaluation rules using the calculus of Fuzzy Logic is explained.