## Fraunhofer (ITWM)

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Bericht (198)
- Preprint (19)
- Dissertation (4)
- Arbeitspapier (1)

#### Schlagworte

- numerical upscaling (7)
- Integer programming (4)
- hub location (4)
- Darcy’s law (3)
- Heston model (3)
- Lagrangian mechanics (3)
- effective heat conductivity (3)
- facility location (3)
- non-Newtonian flow in porous media (3)
- optimization (3)

#### Fachbereich / Organisatorische Einheit

- Fraunhofer (ITWM) (222)
- Fachbereich Mathematik (2)

In this paper a three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials is derived. The model is based on stochastic diferential equations describing the resulting position of the fiber on the belt under the influence of turbulent air ows. The model presented here is an extension of an existing surrogate model, see [6, 3].

In this work, we analyze two important and simple models of short rates, namely Vasicek and CIR models. The models are described and then the sensitivity of the models with respect to changes in the parameters are studied. Finally, we give the results for the estimation of the model parameters by using two different ways.

We propose a constraint-based approach for the two-dimensional rectangular packing problem with orthogonal orientations. This problem is to arrange a set of rectangles that can be rotated by 90 degrees into a rectangle of minimal size such that no two rectangles overlap. It arises in the placement of electronic devices during the layout of 2.5D System-in-Package integrated electronic systems. Moffitt et al. [8] solve the packing without orientations with a branch and bound approach and use constraint propagation. We generalize their propagation techniques to allow orientations. Our approach is compared to a mixed-integer program and we provide results that outperform it.

The direction splitting approach proposed earlier in [6], aiming at the efficient solution of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman equations describing incompressible flows in plain and in porous media. The resulting pressure equation is a perturbation of the
incompressibility constrained using a direction-wise factorized operator as proposed in [6]. We prove that this approach is unconditionally stable for the unsteady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method's accuracy and efficiency.

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.

For the last decade, optimization of beam orientations in intensitymodulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity proles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity proles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity proles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity proles for every selection of beam orientations, making the dependence between beam orientations and its intensity proles less important. We take advantage of this property to present a dynamic algorithm for beam orientation in IMRT which is based on multicriteria inverse planning. The algorithm approximates beam intensity proles iteratively instead of doing it for every selection of beam orientation, saving a considerable amount of calculation time. Every iteration goes from an N-beam plan to a plan with N + 1 beams. Beam selection criteria are based on a score function that minimizes the deviation from the prescribed dose, in addition to a reject-accept criterion. To illustrate the eciency of the algorithm it has been applied to an articial example where optimality is trivial and to three real clinical cases: a prostate carcinoma, a tumor in the head and neck region and a paraspinal tumor. In comparison to the standard equally spaced beam plans, improvements are reported in all of the three clinical examples, even, in some cases with a fewer number of beams.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

Abstract. An efficient approach to the numerical upscaling of thermal conductivities of fibrous media, e.g. insulation materials, is considered. First, standard cell problems for a second order elliptic equation are formulated for a proper piece of random fibrous structure, following homogenization theory. Next, a graph formed by the fibers is considered, and a second order elliptic equation with suitable boundary conditions is solved on this graph only. Replacing the boundary value problem for the full cell with an auxiliary problem with special boundary conditions on a connected subdomain of highly conductive material is justified in a previous work of the authors. A discretization on the graph is presented here, and error estimates are provided. The efficient implementation of the algorithm is discussed. A number of numerical experiments is presented in order to illustrate the performance of the proposed method.

In the literature, there are at least two equivalent two-factor Gaussian models for the instantaneous short rate. These are the original two-factor Hull White model (see [3]) and the G2++ one by Brigo and Mercurio (see [1]). Both these models first specify a time homogeneous two-factor short rate dynamics and then by adding a deterministic shift function '(·) fit exactly the initial term structure of interest rates. However, the obtained results are rather clumsy and not intuitive which means that a special care has to be taken for their correct numerical implementation.