## AG RESY

- Randomized Parallel Motion Planning for Robot Manipulators (1996)
- We have presented a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on arandomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized con guration space, which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to find a path connecting the initial con guration to the goal via a number of randomly generated subgoal con gurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried outontheparallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the e ciency of motion planning signi cantly.

- On-line path planning with optimal C-space discretization (1998)
- This paper is based on a path planning approach we reported earlier for industrial robot arms with 6 degrees of freedom in an on-line given 3D environment. It has on-line capabilities by searching in an implicit and descrete configuration space and detecting collisions in the Cartesian workspace by distance computation based on the given CAD model. Here, we present different methods for specifying the C-space discretization. Besides the usual uniform and heuristic discretization, we investigate two versions of an optimal discretization for an user-predefined Cartesian resolution. The different methods are experimentally evaluated. Additionally, we provide a set of 3- dimensional benchmark problems for a fair comparison of path planner. For each benchmark, the run-times of our planner are between only 3 and 100 seconds on a Pentium PC with 133 MHz.

- On-line path planning by heuristic hierarchical search (1998)
- In this paper, the problem of path planning for robot manipulators with six degrees of freedom in an on-line provided three-dimensional environment is investigated. As a basic approach, the best-first algorithm is used to search in the implicit descrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on the given CAD model. The basic approach is extended by three simple mechanisms and results in a heuristic hierarchical search. This is done by adjusting the stepsize of the search to the distance between the robot and the obstacles. As a first step, we show encouraging experimental results with two degrees of freedom for five typical benchmark problems.

- 6 DOF path planning in dynamic environments - A parallel on-line approach (1998)
- This paper presents a new approach to parallel path planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based a best-first search algorithm and needs no essential off-line computations. The algorithm works in an implicitly discrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on polyhedral models of the robot and the obstacles. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel path planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows very good speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

- Multi-directional search with goal switching for robot path planning (1998)
- We present a parallel path planning method that is able to automatically handle multiple goal configurations as input. There are two basic approaches, goal switching and bi-directional search, which are combined in the end. Goal switching dynamically selects a fa-vourite goal depending on some distance function. The bi-directional search supports the backward search direction from the goal to the start configuration, which is probably faster. The multi-directional search with goal switching combines the advantages of goal switching and bi-directional search. Altogether, the planning system is enabled to select one of the pref-erable goal configuration by itself. All concepts are experimentally validated for a set of benchmark problems consisting of an industrial robot arm with six degrees of freedom in a 3D environment.

- Path planning for industrial robot arms - A parallel randomized approach (1996)
- The paper presents a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on a randomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized configuration space which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to nd a path connecting the initial configuration to the goal via a number of randomly generated subgoal configurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried out on the parallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the efficiency of motion planning significantly.

- Manipulating deformable linear objects - Contact states and point contacts - (1999)
- The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. To distinguish between different non-rigid object behaviors, five classes of deformable objects from a robotic point of view are proposed. Additionally, an enumeration of all possible contact states of one-dimensional objects with polyhedral obstacles is provided. Finally, the qualitative motion behavior of linear objects is analyzed for stable point contacts. Experiments with different materials validate the analytical results.

- A Review of Parallel Processing Approaches to Robot Kinematics and Jacobian (1997)
- Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and classify the references by this scheme.

- Fast Distance Computation for On-line Collision Detection with Multi-Arm Robots (1992)
- For the online collision detection with a multi-arm robot a fast method for computing the so-called collision vector is presented. Manipulators and obstacles are modelled by sets of convex polytopes. Known distance algorithms serve as a foundation. To speed up the collision detection dynamic obstacles are approximated by geometric primitives and organized in hierarchies. On-line, the here introduced Dynamic Hierarchies are adjusted to the current arm configuration. A comparison with previous methods shows an increased acceleration of the computations.