## Fachbereich Physik

### Refine

#### Year of publication

- 1999 (78) (remove)

#### Document Type

- Preprint (53)
- Article (16)
- Course Material (6)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Keywords

- Praktikum (6)
- Brillouin light scattering spectroscopy (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- spin wave quantization (2)
- 90° orientation (1)
- Brillouin light scattering (1)

- Stark Resonances in dc fields from short time propagation of the field-free Hamiltonian (1999)
- A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.

- Elastic properties of thin h-BN films investigated by Brillouin light scattering (1999)
- Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

- Spin wave quantization and dynamic coupling in micron-size circular magnetic dots (1999)
- We report on the observation of spin wave quantization in square arrays of micron size circular magnetic Ni80Fe20 dots by means of Brillouin light scattering spectroscopy. For a large wavevector interval several discrete, dispersionless modes with a frequency splitting of up to 2.5 GHz were observed. The modes are identified as magnetostatic surface spin waves laterally quantized due to in- plane confinement in each single dot. The frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

- Epitaxial growth of metastable Pd(001) on bcc-Fe(001) (1999)
- Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

- Inelastic light scattering in magnetic dots and wires (1999)
- An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

- Magnetic ordering and anisotropies of atomically layered Fe/Au(001) multi-layers (1999)
- We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

- Direct observation of two-dimensional self-focusing of spin waves in magnetic films (1999)
- The first observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasi-stationary diraction of a nite-aperture spin wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line(channel). The obtained results demonstrate the wide applicability of nonlinear spin wave media to study nonlinear wave phenomena using an advanced combined microwave-Brillouin light scattering technique for a two-dimensional mapping ofthe spin wave amplitudes.

- Brillouin light scattering from quantized spin waves in micron-size magnetic wires (1999)
- An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.

- Collisions of Spin Wave Envelope Solitons and Self-Focused Spin Wave Packets in Magnetic Films (1999)
- Head-on collisions between two-dimensional self-focused spin wave packets and between quasi-one-dimensional spin wave envelope solitons have been directly observed for the first time in yttrium-iron garnet (YIG) films by means of a space- and time-resolved Brillouin light scattering technique. We show that quasi-one-dimensional envelope solitons formed in narrow film strips ("waveguides") retain their shapes after collision, while the two-dimensional self-focused spin wave packets formed in wide YIG films are destroyed in collision.

- Biased Switching of small magnetic particles (1999)
- High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.