## Fachbereich Physik

- Quantisation of 2D-gravity with Weyl and area-preserving diffeomorphism invariances (1996)
- The constraint structure of the induced 2D-gravity with the Weyl and area-preserving diffeomorphism invariances is analysed in the ADM formulation. It is found that when the area-preserving diffeomorphism constraints are kept, the usual conformal gauge does not exist, whereas there is the possibility to choose the so-called "quasi-light-cone" gauge, in which besides the area-preserving diffeomorphism invariance, the reduced Lagrangian also possesses the SL(2,R) residual symmetry. This observation indicates that the claimed correspondence between the SL(2,R) residual symmetry and the area-preserving diffeomorphism invariance in both regularisation approaches does not hold. The string-like approach is then applied to quantise this model, but a fictitious non-zero central charge in the Virasoro algebra appears. When a set of gauge-independent SL(2,R) current-like fields is introduced instead of the string-like variables, a consistent quantum theory is obtained, which means that the area-preserving diffeomorphism invariance can be maintained at the quantum level.

- Batalin-Vilkovisky field-antifield quantisation of fluctuations around classical field configurations (1996)
- The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collec- tive coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center- of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) oe-model.^L

- Instanton Induced Tunneling Amplitude At Excited States With The LSZ Method (1996)
- Quantum tunneling between degenerate ground states through the central barrier of a potential is extended to excited states with the instanton method. This extension is achieved with the help of an LSZ reduction technique as in field theory and may be of importance in the study of macroscopic quantum phenomena in magnetic systems.

- Application of Instatons: Quenching Of Macroscopic Quantum Coherence And Macroscopic Fermi-Particle Configurations (1996)
- Starting from the coherent state representation of the evolution operator with the help of the path-integral, we derive a formula for the low-lying levels E = ffl0 Gamma 24ffl cos(s + ,)ss of a quantum spin system. The quenching of macroscopic quantum coherence is understood as the vanishing of cos(s + ,)ss in disagreement with the suppression of tunneling (i.e. 4ffl = 0) as claimed in the literature. A new configuration called the macroscopic Fermi-particle is suggested by the character of its wave function. The tunne- ling rate ( 24fflss ) does not vanish, not for integer spin s nor for a half-integer value of s, and is calculated explicitly (for the position dependent mass) up to the one-loop approximation.

- Simple Calculation of Quantum Spin Tunneling Effects (1997)
- The level splitting formulae much discussed in the study of spin tunneling in macroscopic ferromagnetic particles and previously derived only by complicated pseudoparticle methods for the ground state, are derived from those of eigenvalues of periodic equations and extended to excited states.

- Skyrme Sphalerons of an O(3)-oe Model and the Calculation of Transition Rates at Finite Temperature (1997)
- The reduced O(3)-oe model with an O(3) ! O(2) symmetry breaking potential is considered with an additional Skyrmionic term, i. e. a totally antisymmetric quartic term in the field derivatives. This Skyrme term does not affect the classical static equations of motion which, however, allow an unstable sphaleron solution. Quantum fluctuations around the static classical solution are considered for the determination of the rate of thermally induced transitions between topologically distinct vacua mediated by the sphaleron. The main technical effect of the Skyrme term is to produce an extra measure factor in one of the fluctuation path integrals which is therefore evaluated using a measure-modified Fourier-Matsubara decomposition (this being one of the few cases permitting this explicit calculation). The resulting transition rate is valid in a temperature region different from that of the original Skyrme-less model, and the crossover from transitions dominated by thermal fluctuations to those dominated by tunneling at the lower limit of this range depends on the strength of the Skyrme coupling.

- Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles (1997)
- A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual(vacuum) instanton is recovered.The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.

- Calculation of Spin Tunneling Effects in the Presence of an Applied Magnetic Field (1997)
- The tunneling splitting of the energy levels of a ferromagnetic particle in the presence of an applied magnetic field - previously derived only for the ground state with the path integral method - is obtained in a simple way from Schr"odinger theory. The origin of the factors entering the result is clearly understood, in particular the effect of the asymmetry of the barriers of the potential. The method should appeal particularly to experimentalists searching for evidence of macroscopic spin tunneling.

- Periodic Instantons and Quantum-Classical Transitions in Spin Systems (1998)
- The tunneling splitting of the energy levels of a ferromagnetic particle in the presence of an applied magnetic field - previously derived only for the ground state with the path integral method - is obtained in a simple way from Schr"odinger theory. The origin of the factors entering the result is clearly understood, in particular the effect of the asymmetry of the barriers of the potential. The method should appeal particularly to experimentalists searching for evidence of macroscopic spin tunneling.

- Quantum Tunneling and Phase Transitions in Spin Systems with an Applied Magnetic Field (1998)
- Transitions from classical to quantum behaviour in a spin system with two degenerate ground states separated by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and magnetic parameters defining the system in an effective Lagrangian description.