## Fachbereich Physik

### Refine

#### Keywords

- Self-Duality beyond Chiral p-Form Actions (2000)
- Abstract: The self-duality of chiral p-forms was originally investigated by Pasti, Sorokin and Tonin in a manifestly Lorentz covariant action with non-polynomial auxiliary fields. The investigation was then extended to other chiral p-form actions. In this paper we point out that the self-duality appears in a wider context of theoretical models that relate to chiral p-forms. We demonstrate this by considering the interacting model of Floreanini- Jackiw chiral bosons and gauge fields, the generalized chiral Schwinger model (GCSM) and the latter's gauge invariant formulation, and discover that the self-duality of the GCSM corresponds to the vector and axial vector current duality.

- Particle with torsion on 3d null-curves (1999)
- We consider a (2 + 1)-dimensional mechanical system with the Lagrangian linear in the torsion of a light-like curve. We give Hamiltonian formulation of this system and show that its mass and spin spectra are defined by one-dimensional nonrelativistic mechanics with a cubic potential. Consequently, this system possesses the properties typical of resonance-like particles.

- Self-Duality of Various Chiral Boson Actions (2000)
- Abstract: The duality symmetries of various chiral boson actions are investigated using D = 2 and D = 6 space-time dimensions as examples. These actions involve the Siegel, Floreanini-Jackiw, Srivastava and Pasti-Sorokin-Tonin formulations. We discover that the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions have self-duality with respect to a common anti-dualization of chiral boson fields in D = 2 and D = 6 dimensions, respectively, while the Srivastava action is self-dual with respect to a generalized dualization of chiral boson fields. Moreover, the action of the Floreanini-Jackiw chiral bosons interacting with gauge fields in D = 2 dimensions also has self-duality but with respect to a generalized anti-dualization of chiral boson fields.

- Correspondence, Poincar'e Vacuum Stateand Greybody Factors in BTZ Black Holes (1998)
- The greybody factors in BTZ black holes are evaluated from 2D CFT in the spirit of AdS3/CFT correspondence. The initial state of black holes in the usual calculation of greybody factors by effective CFT is described as Poincar'e vacuum state in 2D CFT. The normalization factor which cannot be fixed in the effective CFT without appealing to string theory is shown to be determined by the normalized bulk-to-boundary Green function. The relation among the greybody factors in different dimensional black holes is exhibited. Two kinds of (h; _h) = (1; 1) operators which couple with the boundary value of massless scalar field are discussed.

- Nonvacuum Preudoparticles, Quantum Tunneling and Metastability (1995)
- It is shown that nonvacuum pseudoparticles can account for quantum tunneling and metastability. In particular the saddle- point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny and Fateyev.

- On Different Formulations of Chiral Bosons (1999)
- It is shown, that recently constructed PST Lagrangians for chiral supergravities follow directly from earlier Kavalov-Mkrtchyan Lagrangians by an Ansatz for the ' tensor by expressing this in terms of the PST scalar. The susy algebra which included earlier ff-symmetry in the commutator of supersymmetry transformations, is now shown to include both PST symmetries, which arise from the single ff-symmetry term. The Lagrangian for the 5-brane is not described by this correspondence, and probably can be obtained from more general Lagrangians, posessing ff-symmetry.