## Fachbereich Physik

### Refine

#### Year of publication

#### Document Type

- Preprint (162)
- Article (41)
- Doctoral Thesis (17)
- Periodical Part (17)
- Master's Thesis (8)
- Course Material (6)
- Working Paper (5)

#### Keywords

- Wannier-Stark systems (9)
- resonances (9)
- Quantum mechanics (8)
- lifetimes (7)
- Praktikum (6)
- quantum mechanics (6)
- Lasererzeugtes Plasma (3)
- entropy (3)
- lifetime statistics (3)
- localization (3)

- Calculation of Wannier-Bloch and Wannier-Stark states (1998)
- The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric ,eld), which are known as the Wannier-Stark ladder of resonances. An ecient procedure to ,nd the positions and widths of resonances is suggested and illustrated by numerical calculation for a cosine potential.

- A truncated shift - operator technique for the calculation of resonances in Stark systems (1999)
- A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

- Spin waves and magnetic anisotropy in ultrathin (111)-oriented cubic films (1998)
- The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

- Semiclassical analysis of tunneling splittings in periodically driven quantum systems (1997)
- For periodically driven systems, quantum tunneling between classical resonant stability islands in phase space separated by invariant KAM curves or chaotic regions manifests itself by oscillatory motion of wave packets centered on such an island, by multiplet splittings of the quasienergy spectrum, and by phase space localisation of the quasienergy states on symmetry related ,ux tubes. Qualitatively di,erent types of classical resonant island formation | due to discrete symmetries of the system | and their quantum implications are analysed by a (uniform) semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic oscillator.

- Resonances from short time complex-scaled cross-correlation probability amplitudes by the Filter-Diagonalization Method (1997)
- The Filter-Diagonalization Method is used to ,nd the broad and even overlapping resonances of a 1D Hamiltonian used before as a test model for new resonance theories and computational methods. It is found that the use of several complex-scaled cross-correlation probability amplitudes from short time propagation enables the calculation of broad overlapping resonances, which can not be resolved from the amplitude of a single complex-scaled autocorrelation calculation.

- Global and local dynamical invariants and quasienergy states of time-periodic Hamiltonians (1998)
- A formalism is developed for calculating the quasienergy states and spectrum for time-periodic quantum systems when a time-periodic dynamical invariant operator with a nondegenerate spectrum is known. The method, which circumvents the integration of the Schr-odinger equation, is applied to an integrable class of systems, where the global invariant operator is constructed. Furthermore, a local integrable approximation for more general non-integrable systems is developed. Numerical results are presented for the doubleresonance model.

- The 'Ermakov-Lewis' invariants for Coupled Linear Oscillators (1998)
- We consider N coupled linear oscillators with time-dependent coecients. An exact complex amplitude - real phase decomposition of the oscillatory motion is constructed. This decomposition is further used to derive N exact constants of motion which generalise the so-called Ermakov-Lewis invariant of a single oscillator. In the Floquet problem of periodic oscillator coecients we discuss the existence of periodic complex amplitude functions in terms of existing Floquet solutions.

- Quantum Chaos (1999)
- The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

- Mode beating of spin wave beams in ferrimagnetic Lu2.04Bi0.96Fe5O12 films (1999)
- Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.