## Fachbereich Physik

### Filtern

#### Dokumenttyp

- Wissenschaftlicher Artikel (8)
- Preprint (2)

#### Sprache

- Englisch (10) (entfernen)

#### Schlagworte

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus static force. Originally this problem was formulated for a crystalline electron subject to the static electric field and is known nowadays as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and, in this sense, solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems like optical or semiconductor superlattices.

A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.

The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder induced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy states, which take into account the metastable character of the Wannier-Stark states. It is shown that the periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial length varying in time as ~ t^1/2. Such a state can find applications in the field of atomic optics because it generates a coherent pulsed atomic beam.

An extremely simple and convenient method is presented for computing eigenvalues in quantum mechanics by representing position and momentum operators in a simple matrix form. The simplicity and success of the method is illustrated by numerical results concerning eigenvalues of bound systems and resonances for hermitian and non-hermitian Hamiltonians as well as driven quantum systems.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

The paper studies the effect of a weak periodic driving on metastable Wannier-Stark states. The decay rate of the ground Wannier-Stark states as a continuous function of the driving frequency is calculated numerically. The theoretical results are compared with experimental data of Wilkinson et at. [Phys.Rev.Lett.76, 4512 (1996)] obtained for cold sodium atoms in an accelerated optical lattice.

The statistics of the resonance widths and the behavior of the survival probability is studied in a particular model of quantum chaotic scattering (a particle in a periodic potential subject to static and time-periodic forces) introduced earlier in Ref. [5,6]. The coarse-grained distribution of the resonance widths is shown to be in good agreement with the prediction of Random Matrix Theory (RMT). The behavior of the survival probability shows, however, some deviation from RMT.

The quasienergy spectrum of a Bloch electron affected by dc-ac fields is known to have a fractal structure as function of the so-called electric matching ratio, which is the ratio of the ac field frequency and the Bloch frequency. This paper studies a manifestation of the fractal nature of the spectrum in the system "atom in a standing laser wave", which is a quantum optical realization of a Bloch electron. It is shown that for an appropriate choice of the system parameters the atomic survival probability (a quantity measured in laboratory experiments) also develops a fractal structure as a function of the electric matching ratio. Numerical simulations under classically chaotic scattering conditions show good agreement with theoretical predictions based on random matrix theory.