## Fachbereich Physik

- Lateral quantization of spin waves in micron size magnetic wires (1997)
- We report on the observation of quantized surface spin waves in periodic arrays of magnetic Ni81Fe19 wires by means of Brillouin light scattering spectroscopy. At small wavevectors (q_1 = 0 - 0.9*100000 cm^-1 ) several discrete, dispersionless modes with a frequency splitting of up to 0.9 GHz were observed for the wavevector oriented perpendicular to the wires. From the frequencies of the modes and the wavevector interval, where each mode is observed, the modes are identified as dipole-exchange surface spin wave modes of the film with quantized wavevector values determined by the boundary conditions at the lateral edges of the wires. With increasing wavevector the separation of the modes becomes smaller, and the frequencies of the discrete modes converge to the dispersion of the dipole-exchange surface mode of a continuous film.

- Calculation of Wannier-Bloch and Wannier-Stark states (1998)
- The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric ,eld), which are known as the Wannier-Stark ladder of resonances. An ecient procedure to ,nd the positions and widths of resonances is suggested and illustrated by numerical calculation for a cosine potential.

- Mode beating of spin wave beams in ferrimagnetic Lu2.04Bi0.96Fe5O12 films (1999)
- Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

- On the Mass Difference of Neutrinos (1995)
- We calculate a relative neutrino mass difference of Delta m / m = 6 10^-9 at the one loop level in a two flavor model. If we combine our result with recently published possible solutions to the solar neutrino problem we can estimate a neutrino mass range of m = (0,12-0,19) eV .

- Universal and non-universal behavior in Dirac spectra (1998)
- We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

- Nonvacuum Preudoparticles, Quantum Tunneling and Metastability (1995)
- It is shown that nonvacuum pseudoparticles can account for quantum tunneling and metastability. In particular the saddle- point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny and Fateyev.

- BRST-Invariant Approach to Quantum Mechanical Tunneling (1995)
- A new approach with BRST invariance is suggested to cure the degeneracy problem of ill defined path integrals in the path- integral calculation of quantum mechanical tunneling effects in which the problem arises due to the occurrence of zero modes. The Faddeev-Popov procedure is avoided and the integral over the zero mode is transformed in a systematic way into a well defined integral over instanton positions. No special procedure has to be adopted as in the Faddeev-Popov method in calculating the Jacobian of the transformation. The quantum mechanical tunneling for the Sine-Gordon potential is used as a test of the method and the width of the lowest energy band is obtained in exact agreement with that of WKB calculations.

- Correlation between structure and magnetic anisotropies of Co on Cu(110) (1999)
- Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

- A new look at the RST model (1996)
- The RST model is augmented by the addition of a scalar field and a boundary term so that it is well-posed and local. Expressing the RST action in terms of the ADM formulation, the constraint structure can be analysed completely. It is shown that from the view point of local field theories, there exists a hidden dynamical field 1 in the RST model. Thanks to the presence of this hidden dynamical field, we can reconstruct the closed algebra of the constraints which guarantee the general invariance of the RST action. The resulting stress tensors TSigma Sigma are recovered to be true tensor quantities. Especially, the part of the stress tensors for the hidden dynamical field 1 gives the precise expression for tSigma . At the quantum level, the cancellation condition for the total central charge is reexamined. Finally, with the help of the hidden dynamical field 1, the fact that the semi-classical static soluti on of the RST model has two independent parameters (P,M), whereas for the classical CGHS model there is only one, can be explained.

- Significance of zero modes in path-integral quantization of solitonic theories with BRST invariance (1996)
- The significance of zero modes in the path-integral quantization of some solitonic models is investigated. In particular a Skyrme-like theory with topological vortices in (1 + 2) dimensions is studied, and with a BRST invariant gauge fixing a well defined transition amplitude is obtained in the one loop approximation. We also present an alternative method which does not necessitate evoking the time-dependence in the functional integral, but is equivalent to the original one in dealing with the quantization in the background of the static classical solution of the non-linear field equations. The considerations given here are particularly useful in - but also limited to -the one-loop approximation.