## Fachbereich Physik

### Refine

#### Year of publication

- 1999 (16) (remove)

#### Document Type

- Article (16) (remove)

#### Keywords

- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- 90° orientation (1)
- Curie temperature (1)
- Ferromagnetism (1)
- Filter-Diagonalization (1)
- Interacting Magnetic Dots and Wires (1)

- A generalized entropy measuring quantum localization (1999)
- We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

- Selective Quasienergies from Short Time Cross-Correlation Probability Amplitudes by the Filter-Diagonalization Method (1999)
- The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

- Phase space entropies and global quantum phase space organisation: A two-dimensional anharmonic system (1999)
- The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

- A truncated shift - operator technique for the calculation of resonances in Stark systems (1999)
- A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

- Quantum Chaos (1999)
- The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

- Bloch particle in presence of dc and ac fields (1999)
- The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

- Stark Resonances in dc fields from short time propagation of the field-free Hamiltonian (1999)
- A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.

- Epitaxial growth of metastable Pd(001) on bcc-Fe(001) (1999)
- Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

- Magnetic ordering and anisotropies of atomically layered Fe/Au(001) multi-layers (1999)
- We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

- Arrays of Interacting Magnetic Dots and Wires: Static and Dynamic Properties (1999)
- Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.