## Fachbereich Physik

### Refine

#### Document Type

- Article (41) (remove)

#### Keywords

- resonances (8)
- Wannier-Stark systems (7)
- Quantum mechanics (6)
- lifetimes (6)
- quantum mechanics (5)
- entropy (3)
- lifetime statistics (3)
- localization (3)
- dynamical systems (2)
- phase-space (2)

- Harmonic oscillator subject to parametric pulses: an amplitude (Milne) oscillator approach (2001)
- A harmonic oscillator subject to a parametric pulse is examined. The aim of the paper is to present a new theory for analysing transitions due to parametric pulses. The new theoretical notions which are introduced relate the pulse parameters in a direct way with the transition matrix elements. The harmonic oscillator transitions are expressed in terms of asymptotic properties of a companion oscillator, the Milne (amplitude) oscillator. A traditional phase-amplitude decomposition of the harmonic-oscillator solutions results in the so-called Milne's equation for the amplitude, and the phase is determined by an exact relation to the amplitude. This approach is extended in the present analysis with new relevant concepts and parameters for pulse dynamics of classical and quantal systems. The amplitude oscillator has a particularly nice numerical behavior. In the case of strong pulses it does not possess any of the fast oscillations induced by the pulse on the original harmonic oscillator. Furthermore, the new dynamical parameters introduced in this approach relate closely to relevant characteristics of the pulse. The relevance to quantum mechanical problems such as reflection and transmission from a localized well and mechanical problems of controlling vibrations is illustrated.

- Wannier-Stark Ladders in Driven Optical Lattices (2000)
- The paper studies the effect of a weak periodic driving on metastable Wannier-Stark states. The decay rate of the ground Wannier-Stark states as a continuous function of the driving frequency is calculated numerically. The theoretical results are compared with experimental data of Wilkinson et at. [Phys.Rev.Lett.76, 4512 (1996)] obtained for cold sodium atoms in an accelerated optical lattice.

- About universality of lifetime statistics in quantum chaotic scattering (2000)
- The statistics of the resonance widths and the behavior of the survival probability is studied in a particular model of quantum chaotic scattering (a particle in a periodic potential subject to static and time-periodic forces) introduced earlier in Ref. [5,6]. The coarse-grained distribution of the resonance widths is shown to be in good agreement with the prediction of Random Matrix Theory (RMT). The behavior of the survival probability shows, however, some deviation from RMT.

- Induced transitions between Wannier ladders (2000)
- We study the transitions between the ground and excited Wannier states induced by a weak ac field. Because the upper Wannier states are several order of magnitude less stable than the ground states, these transitions decrease the global stability of the system characterized by the rate of probability leakage or decay rate. Using nonhermitian resonant perturbation theory we obtain an analytical expression for this induced decay rate. The analytical results are compared with exact numerical calculations of the system decay rate.

- Fractal stabilization of Wannier-Stark resonances (2000)
- The quasienergy spectrum of a Bloch electron affected by dc-ac fields is known to have a fractal structure as function of the so-called electric matching ratio, which is the ratio of the ac field frequency and the Bloch frequency. This paper studies a manifestation of the fractal nature of the spectrum in the system "atom in a standing laser wave", which is a quantum optical realization of a Bloch electron. It is shown that for an appropriate choice of the system parameters the atomic survival probability (a quantity measured in laboratory experiments) also develops a fractal structure as a function of the electric matching ratio. Numerical simulations under classically chaotic scattering conditions show good agreement with theoretical predictions based on random matrix theory.

- A quantum cable car for Wannier-Stark ladders (2000)
- The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder induced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy states, which take into account the metastable character of the Wannier-Stark states. It is shown that the periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial length varying in time as ~ t^1/2. Such a state can find applications in the field of atomic optics because it generates a coherent pulsed atomic beam.

- Wannier-Stark states of a quantum particle in 2D lattices (2000)
- A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.

- Some Remarks on Complex Hamiltonian Systems (2000)
- The analyticity property of the one-dimensional complex Hamiltonian system H(x,p)=H_1(x_1,x_2,p_1,p_2)+iH_2(x_1,x_2,p_1,p_2) with p=p_1+ix_2, x=x_1+ip_2 is exploited to obtain a new class of the corresponding two-dimensional integrable Hamiltonian systems where H_1 acts as a new Hamiltonian and H_2 is a second integral of motion. Also a possible connection between H_1 and H_2 is sought in terms of an auto-B"acklund transformation.

- A generalized entropy measuring quantum localization (1999)
- We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.