## Fachbereich Physik

### Filtern

#### Schlagworte

- Correspondence, Poincar'e Vacuum Stateand Greybody Factors in BTZ Black Holes (1998)
- The greybody factors in BTZ black holes are evaluated from 2D CFT in the spirit of AdS3/CFT correspondence. The initial state of black holes in the usual calculation of greybody factors by effective CFT is described as Poincar'e vacuum state in 2D CFT. The normalization factor which cannot be fixed in the effective CFT without appealing to string theory is shown to be determined by the normalized bulk-to-boundary Green function. The relation among the greybody factors in different dimensional black holes is exhibited. Two kinds of (h; _h) = (1; 1) operators which couple with the boundary value of massless scalar field are discussed.

- D-Branes and their Absorptivity in Born-Infeld Theory (2000)
- Abstract: Standard methods of nonlinear dynamics are used to investigate the stability of particles, branes and D-branes of abelian Born-Infeld theory. In particular the equation of small fluctuations about the D-brane is derived and converted into a modified Mathieu equation and - complementing earlier low-energy investigations in the case of the dilaton-axion system - studied in the high-energy domain. Explicit expressions are derived for the S-matrix and absorption and reflection amplitudes of the scalar fluctuation in the presence of the D-brane. The results confirm physical expectations and numerical studies of others. With the derivation and use of the (hitherto practically unknown) high energy expansion of the Floquet exponent our considerations also close a gap in earlier treatments of the Mathieu equation.

- Gross-Ooguri Phase Transition at Zero and Finite Temperature: Two Circular Wilson Loop Case (2001)
- Abstract: In the context of AdS/CFT correspondence the two Wilson loop correlator is examined at both zero and finite temperatures. On the basis of an entirely analytical approach we have found for Nambu-Goto strings the functional relation dSc(Reg) /dL = 2*pi*k between Euclidean action Sc and loop separation L with integration constant k, which corresponds to the analogous formula for point-particles. The physical implications of this relation are explored in particular for the Gross-Ooguri phase transition at finite temperature.

- Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects (1999)
- Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the e effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.

- Macroscopic Quantum Phase Interference in Antiferromagnetic Particles (2000)
- Abstact. The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a function of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings. The oscillation is similar to the recent experimental result with Fe8 molecular clusters.

- Nonvacuum Preudoparticles, Quantum Tunneling and Metastability (1995)
- It is shown that nonvacuum pseudoparticles can account for quantum tunneling and metastability. In particular the saddle- point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny and Fateyev.

- Nonvacuum pseudoparticles, quantum tuneling and metastability (1995)
- Abstract: It is shown that nonvacuum pseudoparticles can account forquantum tunneling and metastability. In particular the saddle-point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny andFateyev.

- On Different Formulations of Chiral Bosons (1999)
- It is shown, that recently constructed PST Lagrangians for chiral supergravities follow directly from earlier Kavalov-Mkrtchyan Lagrangians by an Ansatz for the ' tensor by expressing this in terms of the PST scalar. The susy algebra which included earlier ff-symmetry in the commutator of supersymmetry transformations, is now shown to include both PST symmetries, which arise from the single ff-symmetry term. The Lagrangian for the 5-brane is not described by this correspondence, and probably can be obtained from more general Lagrangians, posessing ff-symmetry.

- Particle with torsion on 3d null-curves (1999)
- We consider a (2 + 1)-dimensional mechanical system with the Lagrangian linear in the torsion of a light-like curve. We give Hamiltonian formulation of this system and show that its mass and spin spectra are defined by one-dimensional nonrelativistic mechanics with a cubic potential. Consequently, this system possesses the properties typical of resonance-like particles.