## Fachbereich Mathematik

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (879)
- Fraunhofer (ITWM) (2)

#### Year of publication

#### Document Type

- Preprint (565)
- Doctoral Thesis (192)
- Report (39)
- Article (28)
- Diploma Thesis (25)
- Lecture (18)
- Part of a Book (4)
- Study Thesis (4)
- Working Paper (2)
- Bachelor Thesis (1)

#### Has Fulltext

- yes (879) (remove)

#### Keywords

- Wavelet (12)
- Inverses Problem (10)
- Modellierung (10)
- Mathematikunterricht (9)
- Mehrskalenanalyse (9)
- praxisorientiert (9)
- Boltzmann Equation (7)
- Location Theory (7)
- Approximation (6)
- Lineare Algebra (6)

- Remarks on Orthogonal Polynomials and Balanced Realizations (1992)
- Given a proper antistable rational transfer function g, a balanced realization of g is contructed as a matrix representation of the abstract shift realization introduced in Fuhrmann [1976]. The required basis is constructed as a union of sets of polynomials orthogonal with respect to weights given by the square of the absolute values of minimal degree Schmidt vectors of the corresponding Hankel operators. This extends results of Fuhrmann [1991], obtained in the generic case.

- An Analysis of Baganoff" s Shuffle Algorithm (1993)
- The paper presents the shuffle algorithm proposed by Baganoff, which can be implemented in simulation methods for the Boltzmann equation to simplify the binary collision process. It is shown that the shuffle algborithm is a discrete approximation of an isotropic collision law. The transition probability as well as the scattering cross section of the shuffle algorithm are opposed to the corresponding quantities of a hard-sphere model. The discrepancy between measures on a sphere is introduced in order to quantify the approximation error by using the shuffle algorithm.

- Construction of Particlesets to Simulate Rarefied Gases (1993)
- In this paper a new method is introduced to construct asymptotically f-distributed sequences of points in the IR^d. The algorithm is based on a transformation proposed by E. Hlawka and R. Mück. For the numerical tests a new procedure to evaluate the f-discrepancy in two dimensions is proposed.

- Domain Decomposition: Linking Kinetic and Aerodynamic Descriptions (1993)
- We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.

- Fast Generation of Low-Discrepancy Sequences (1993)
- The paper presents a fast implementation of a constructive method to generate a special class of low-discrepancy sequences which are based on Van Neumann-Kakutani tranformations. Such sequences can be used in various simulation codes where it is necessary to generate a certain number of uniformly distributed random numbers on the unit interval.; From a theoretical point of view the uniformity of a sequence is measured in terms of the discrepancy which is a special distance between a finite set of points and the uniform distribution on the unit interval.; Numerical results are given on the cost efficiency of different generators on different hardware architectures as well as on the corresponding uniformity of the sequences. As an example for the efficient use of low-discrepancy sequences in a complex simulation code results are presented for the simulation of a hypersonic rarefied gas flow.

- 3D Eddy-Current Computation Using Krylov Subspace Methods (1993)
- This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

- A discrepancy principle for Tikhonov regularization with approximately specified data (1999)
- Many discrepancy principles are known for choosing the parameter \(\alpha\) in the regularized operator equation \((T^*T+ \alpha I)x_\alpha^\delta = T^*y^\delta\), \(||y-y^d||\leq \delta\), in order to approximate the minimal norm least-squares solution of the operator equation \(Tx=y\). In this paper we consider a class of discrepancy principles for choosing the regularization parameter when \(T^*T\) and \(T^*y^\delta\) are approximated by \(A_n\) and \(z_n^\delta\) respectively with \(A_n\) not necessarily self - adjoint. Thisprocedure generalizes the work of Engl and Neubauer (1985),and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).