## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (901)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (569)
- Dissertation (204)
- Bericht (39)
- Wissenschaftlicher Artikel (30)
- Diplomarbeit (25)
- Vorlesung (19)
- Teil eines Buches (Kapitel) (4)
- Studienarbeit (4)
- Arbeitspapier (3)
- Masterarbeit (2)

#### Volltext vorhanden

- ja (901) (entfernen)

#### Schlagworte

- Wavelet (12)
- Inverses Problem (10)
- Modellierung (10)
- Mathematikunterricht (9)
- Mehrskalenanalyse (9)
- praxisorientiert (9)
- Boltzmann Equation (7)
- Location Theory (7)
- MINT (7)
- Mathematische Modellierung (7)

- Variational methods for elliptic boundary value methods (1999)
- The mathematical modelling of problems in science and engineering leads often to partial differential equations in time and space with boundary and initial conditions.The boundary value problems can be written as extremal problems(principle of minimal potential energy), as variational equations (principle of virtual power) or as classical boundary value problems.There are connections concerning existence and uniqueness results between these formulations, which will be investigated using the powerful tools of functional analysis.The first part of the lecture is devoted to the analysis of linear elliptic boundary value problems given in a variational form.The second part deals with the numerical approximation of the solutions of the variational problems.Galerkin methods as FEM and BEM are the main tools. The h-version will be discussed, and an error analysis will be done.Examples, especially from the elasticity theory, demonstrate the methods.

- Existence and Learning of Oscillations in Recurrent Neural Networks (1998)
- In this paper we study a particular class of \(n\)-node recurrent neural networks (RNNs).In the \(3\)-node case we use monotone dynamical systems theory to show,for a well-defined set of parameters, that,generically, every orbit of the RNN is asymptotic to a periodic orbit.Then, within the usual 'learning' context of NeuralNetworks, we investigate whether RNNs of this class can adapt their internal parameters soas to 'learn' and then replicate autonomously certain external periodic signals.Our learning algorithm is similar to identification algorithms in adaptivecontrol theory. The main feature of the adaptation algorithm is that global exponential convergenceof parameters is guaranteed. We also obtain partial convergence results in the \(n\)-node case.

- Problems Related to Solutions to the Navier-Stokes Equations (1999)
- Many interesting problems arise from the study of the behavior of fluids. From a theoretical point of view Fluid Dynamics works with a well defined set of equat ions for which it is expected to get a clear description of the solutions. Unfortunately, in ge neral this is not easy even if the many experiments performed in the field seem to indicate which path to follow. Some of the basic questions are still either partially or widely open. For example we would like to have a better understanding on : 1. Questions for both bounded and unbounded domains on regularity, uniqueness, long time behavior of the solutions. 2. How well do solutions to the fluid equations fit to the real flow. Depending on the type of data most of the answers to these questions are knonw, when we work in two dimensions. For solutions in three dimensions, in general, we have only partial answers.

- Applications of a New Model for the Differential Cross-Section of a Classical Polyatomic Gas (1999)
- We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.

- Maximum entropy for reduced moment problems (1999)
- The existence of maximum entropy solutions for a wide class of reduced moment problems on arbitrary open subsets of Rd is considered. In particular, new results for the case of unbounded domains are obtained. A precise condition is presented under which solvability of the moment problem implies existence of a maximum entropy solution.

- The Quantum Zero Space Charge Model for Semiconductors (1999)
- The thermal equilibrium state of a bipolar, isothermal quantum fluid confined to a bounded domain \(\Omega\subset I\!\!R^d,d=1,2\) or \( d=3\) is the minimizer of the total energy \({\mathcal E}_{\epsilon\lambda}\); \({\mathcal E}_{\epsilon\lambda}\) involves the squares of the scaled Planck's constant \(\epsilon\) and the scaled minimal Debye length \(\lambda\). In applications one frequently has \(\lambda^2\ll 1\). In these cases the zero-space-charge approximation is rigorously justified. As \(\lambda \to 0 \), the particle densities converge to the minimizer of a limiting quantum zero-space-charge functional exactly in those cases where the doping profile satisfies some compatibility conditions. Under natural additional assumptions on the internal energies one gets an differential-algebraic system for the limiting \((\lambda=0)\) particle densities, namely the quantum zero-space-charge model. The analysis of the subsequent limit \(\epsilon \to 0\) exhibits the importance of quantum gaps. The semiclassical zero-space-charge model is, for small \(\epsilon\), a reasonable approximation of the quantum model if and only if the quantum gap vanishes. The simultaneous limit \(\epsilon =\lambda \to 0\) is analyzed.

- A General Hilbert Space Approach to Wavelets and Its Application in Geopotential Determination (1999)
- A general approach to wavelets is presented within a framework of a separable functional Hilbert space H. Basic tool is the construction of H-product kernels by use of Fourier analysis with respect to an orthonormal basis in H. Scaling function and wavelet are defined in terms of H-product kernels. Wavelets are shown to be 'building blocks' that decorrelate the data. A pyramid scheme provides fast computation. Finally, the determination of the earth's gravitational potential from single and multipole expressions is organized as an example of wavelet approximation in Hilbert space structure.

- Constructive Approximation and Numerical Methods in Geodetic; Research Today - An Attempt of a Categorization Based on anUncertainty Principle (1999)
- This review article reports current activities and recent progress on constructive approximation and numerical analysis in physical geodesy. The paper focuses on two major topics of interest, namely trial systems for purposes of global and local approximation and methods for adequate geodetic application. A fundamental tool is an uncertainty principle, which gives appropriate bounds for the quantification of space and momentum localization of trial functions. The essential outcome is a better understanding of constructive approximation in terms of radial basis functions such as splines and wavelets.

- A Singular-Perturbed Two-Phase Stefan Problem Due to Slow Diffusion (1999)
- The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

- The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model (1999)
- This paper is concerned with numerical algorithms for the bipolar quantum drift diffusion model. For the thermal equilibrium case a quasi-gradient method minimizing the energy functional is introduced and strong convergence is proven. The computation of current - voltage characteristics is performed by means of an extended emph{Gummel - iteration}. It is shown that the involved fixed point mapping is a contraction for small applied voltages. In this case the model equations are uniquely solvable and convergence of the proposed iteration scheme follows. Numerical simulations of a one dimensional resonant tunneling diode are presented. The computed current - voltage characteristics are in good qualitative agreement with experimental measurements. The appearance of negative differential resistances is verified for the first time in a Quantum Drift Diffusion model.