## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (908)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (569)
- Dissertation (210)
- Bericht (39)
- Wissenschaftlicher Artikel (30)
- Diplomarbeit (25)
- Vorlesung (19)
- Teil eines Buches (Kapitel) (4)
- Studienarbeit (4)
- Arbeitspapier (4)
- Masterarbeit (2)

#### Volltext vorhanden

- ja (908) (entfernen)

#### Schlagworte

- Wavelet (12)
- Inverses Problem (10)
- Modellierung (10)
- Mathematikunterricht (9)
- Mehrskalenanalyse (9)
- praxisorientiert (9)
- Boltzmann Equation (7)
- Location Theory (7)
- MINT (7)
- Mathematische Modellierung (7)

- A kinetic model for vehicular traffic: Existence of stationary solutions (1998)
- In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

- The Rayleigh-Benard Convection in Rarefied Gases (1998)
- In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.

- Multiscale Gravitational Field Recovery from GPS-Satellite-to-Satellite Tracking (1999)
- The purpose of GPS-satellite-to-satellite tracking (GPS-SST) is to determine the gravitational potential at the earth's surface from measured ranges (geometrical distances) between a low-flying satellite and the high-flying satellites of the Global Posittioning System (GPS). In this paper GPS-satellite-to-satellite tracking is reformulated as the problem of determining the gravitational potential of the earth from given gradients at satellite altitude. Uniqueness and stability of the solution are investigated. The essential tool is to split the gradient field into a normal part (i.e. the first order radial derivative) and a tangential part (i.e. the surface gradient). Uniqueness is proved for polar, circular orbits corresponding to both types of data (first radial derivative and/or surface gradient). In both cases gravity recovery based on satellite-to-satellite tracking turns out to be an exponentially ill-posed problem. As an appropriate solution method regularization in terms of spherical wavelets is proposed based on the knowledge of the singular system. Finally, the extension of this method is generalized to a non-spherical earth and a non-spherical orbital surface based on combined terrestrial and satellite data material.

- Convergence in distribution of the multidimensional Kohonen algorithm (1999)
- Here we consider the Kohonen algorithm with a constant learning rate as a Markov process evolving in a topological space. it is shown that the process is an irreducible and aperiodic T-chain, regardless of the dimension of both data space and network and the special shape of the neighborhood function. Moreover the validity of Deoblin's condition is proved. These imply the convergence in distribution of the process to a finite invariant measure with a uniform geometric rate. In addition we show the process is positive Harris recurrent, which enables us to use statistical devices to measure its centrality and variability as the time goes to infinity.

- Comparison of kinetic theory and discrete element schemes for modelling granular Couette flows (1999)
- Discrete element based simulations of granular flow in a 2d velocity space are compared with a particle code that solves kinetic granular flow equations in two and three dimensions. The binary collisions of the latter are governed by the same forces as for the discrete elements. Both methods are applied to a granular shear flow of equally sized discs and spheres. The two dimensional implementation of the kinetic approach shows excellent agreement with the results of the discrete element simulations. When changing to a three dimensional velocity space, the qualitative features of the flow are maintained. However, some flow properties change quantitatively.

- Transition from Kinetic Theory to Macroscopic Fluid Equations: A Problem fo Domain Decomposition and a Source for New Algorithms (1999)
- In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

- Variational methods for elliptic boundary value methods (1999)
- The mathematical modelling of problems in science and engineering leads often to partial differential equations in time and space with boundary and initial conditions.The boundary value problems can be written as extremal problems(principle of minimal potential energy), as variational equations (principle of virtual power) or as classical boundary value problems.There are connections concerning existence and uniqueness results between these formulations, which will be investigated using the powerful tools of functional analysis.The first part of the lecture is devoted to the analysis of linear elliptic boundary value problems given in a variational form.The second part deals with the numerical approximation of the solutions of the variational problems.Galerkin methods as FEM and BEM are the main tools. The h-version will be discussed, and an error analysis will be done.Examples, especially from the elasticity theory, demonstrate the methods.

- Existence and Learning of Oscillations in Recurrent Neural Networks (1998)
- In this paper we study a particular class of \(n\)-node recurrent neural networks (RNNs).In the \(3\)-node case we use monotone dynamical systems theory to show,for a well-defined set of parameters, that,generically, every orbit of the RNN is asymptotic to a periodic orbit.Then, within the usual 'learning' context of NeuralNetworks, we investigate whether RNNs of this class can adapt their internal parameters soas to 'learn' and then replicate autonomously certain external periodic signals.Our learning algorithm is similar to identification algorithms in adaptivecontrol theory. The main feature of the adaptation algorithm is that global exponential convergenceof parameters is guaranteed. We also obtain partial convergence results in the \(n\)-node case.

- Problems Related to Solutions to the Navier-Stokes Equations (1999)
- Many interesting problems arise from the study of the behavior of fluids. From a theoretical point of view Fluid Dynamics works with a well defined set of equat ions for which it is expected to get a clear description of the solutions. Unfortunately, in ge neral this is not easy even if the many experiments performed in the field seem to indicate which path to follow. Some of the basic questions are still either partially or widely open. For example we would like to have a better understanding on : 1. Questions for both bounded and unbounded domains on regularity, uniqueness, long time behavior of the solutions. 2. How well do solutions to the fluid equations fit to the real flow. Depending on the type of data most of the answers to these questions are knonw, when we work in two dimensions. For solutions in three dimensions, in general, we have only partial answers.