## Fachbereich Mathematik

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (805)
- Fraunhofer (ITWM) (2)

#### Year of publication

#### Document Type

- Preprint (540)
- Doctoral Thesis (174)
- Report (35)
- Article (24)
- Diploma Thesis (20)
- Lecture (6)
- Study Thesis (2)
- Working Paper (2)
- Bachelor Thesis (1)
- Periodical (1)

#### Language

- English (805) (remove)

#### Keywords

- Wavelet (12)
- Inverses Problem (10)
- Mehrskalenanalyse (8)
- Boltzmann Equation (7)
- Location Theory (7)
- Approximation (6)
- Navier-Stokes-Gleichung (6)
- Elastoplastizität (5)
- Numerical Simulation (5)
- Algebraische Geometrie (4)

- Constructive Approximation and Numerical Methods in Geodetic; Research Today - An Attempt of a Categorization Based on anUncertainty Principle (1999)
- This review article reports current activities and recent progress on constructive approximation and numerical analysis in physical geodesy. The paper focuses on two major topics of interest, namely trial systems for purposes of global and local approximation and methods for adequate geodetic application. A fundamental tool is an uncertainty principle, which gives appropriate bounds for the quantification of space and momentum localization of trial functions. The essential outcome is a better understanding of constructive approximation in terms of radial basis functions such as splines and wavelets.

- A Singular-Perturbed Two-Phase Stefan Problem Due to Slow Diffusion (1999)
- The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

- The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model (1999)
- This paper is concerned with numerical algorithms for the bipolar quantum drift diffusion model. For the thermal equilibrium case a quasi-gradient method minimizing the energy functional is introduced and strong convergence is proven. The computation of current - voltage characteristics is performed by means of an extended emph{Gummel - iteration}. It is shown that the involved fixed point mapping is a contraction for small applied voltages. In this case the model equations are uniquely solvable and convergence of the proposed iteration scheme follows. Numerical simulations of a one dimensional resonant tunneling diode are presented. The computed current - voltage characteristics are in good qualitative agreement with experimental measurements. The appearance of negative differential resistances is verified for the first time in a Quantum Drift Diffusion model.

- A Finite Difference Interpretation of the Lattice Boltzmann Method (1999)
- Compared to conventional techniques in computational fluid dynamics, the lattice Boltzmann method (LBM) seems to be a completely different approach to solve the incompressible Navier-Stokes equations. The aim of this article is to correct this impression by showing the close relation of LBM to two standard methods: relaxation schemes and explicit finite difference discretizations. As a side effect, new starting points for a discretization of the incompressible Navier-Stokes equations are obtained.

- Remarks on Orthogonal Polynomials and Balanced Realizations (1992)
- Given a proper antistable rational transfer function g, a balanced realization of g is contructed as a matrix representation of the abstract shift realization introduced in Fuhrmann [1976]. The required basis is constructed as a union of sets of polynomials orthogonal with respect to weights given by the square of the absolute values of minimal degree Schmidt vectors of the corresponding Hankel operators. This extends results of Fuhrmann [1991], obtained in the generic case.

- An Analysis of Baganoff" s Shuffle Algorithm (1993)
- The paper presents the shuffle algorithm proposed by Baganoff, which can be implemented in simulation methods for the Boltzmann equation to simplify the binary collision process. It is shown that the shuffle algborithm is a discrete approximation of an isotropic collision law. The transition probability as well as the scattering cross section of the shuffle algorithm are opposed to the corresponding quantities of a hard-sphere model. The discrepancy between measures on a sphere is introduced in order to quantify the approximation error by using the shuffle algorithm.

- Tensor Spherical Harmonics and Tensor Spherical Splines (1993)
- In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

- Construction of Particlesets to Simulate Rarefied Gases (1993)
- In this paper a new method is introduced to construct asymptotically f-distributed sequences of points in the IR^d. The algorithm is based on a transformation proposed by E. Hlawka and R. Mück. For the numerical tests a new procedure to evaluate the f-discrepancy in two dimensions is proposed.