## Fachbereich Mathematik

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (815)
- Fraunhofer (ITWM) (2)

#### Year of publication

#### Document Type

- Preprint (543)
- Doctoral Thesis (181)
- Report (35)
- Article (24)
- Diploma Thesis (20)
- Lecture (6)
- Study Thesis (2)
- Working Paper (2)
- Bachelor Thesis (1)
- Periodical (1)

#### Language

- English (815) (remove)

#### Keywords

- Wavelet (12)
- Inverses Problem (10)
- Mehrskalenanalyse (8)
- Boltzmann Equation (7)
- Location Theory (7)
- Approximation (6)
- Navier-Stokes-Gleichung (6)
- Elastoplastizität (5)
- Numerical Simulation (5)
- Algebraische Geometrie (4)

- Zone-based, Robust Flood Evacuation Planning (2016)
- We consider the problem to evacuate several regions due to river flooding, where sufficient time is given to plan ahead. To ensure a smooth evacuation procedure, our model includes the decision which regions to assign to which shelter, and when evacuation orders should be issued, such that roads do not become congested. Due to uncertainty in weather forecast, several possible scenarios are simultaneously considered in a robust optimization framework. To solve the resulting integer program, we apply a Tabu search algorithm based on decomposing the problem into better tractable subproblems. Computational experiments on random instances and an instance based on Kulmbach, Germany, data show considerable improvement compared to an MIP solver provided with a strong starting solution.

- Ranking Robustness and its Application to Evacuation Planning (2016)
- We present a new approach to handle uncertain combinatorial optimization problems that uses solution ranking procedures to determine the degree of robustness of a solution. Unlike classic concepts for robust optimization, our approach is not purely based on absolute quantitative performance, but also includes qualitative aspects that are of major importance for the decision maker. We discuss the two variants, solution ranking and objective ranking robustness, in more detail, presenting problem complexities and solution approaches. Using an uncertain shortest path problem as a computational example, the potential of our approach is demonstrated in the context of evacuation planning due to river flooding.

- Global existence for a go-or-grow multiscale model for tumor invasion with therapy (2016)
- We investigate a PDE-ODE system describing cancer cell invasion in a tissue network. The model is an extension of the multiscale setting in [28,40], by considering two subpopulations of tumor cells interacting mutually and with the surrounding tissue. According to the go-or-grow hypothesis, these subpopulations consist of moving and proliferating cells, respectively. The mathematical setting also accommodates the effects of some therapy approaches. We prove the global existence of weak solutions to this model and perform numerical simulations to illustrate its behavior for different therapy strategies.

- Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information (2016)
- In a financial market we consider three types of investors trading with a finite time horizon with access to a bank account as well as multliple stocks: the fully informed investor, the partially informed investor whose only source of information are the stock prices and an investor who does not use this infor- mation. The drift is modeled either as following linear Gaussian dynamics or as being a continuous time Markov chain with finite state space. The optimization problem is to maximize expected utility of terminal wealth. The case of partial information is based on the use of filtering techniques. Conditions to ensure boundedness of the expected value of the filters are developed, in the Markov case also for positivity. For the Markov modulated drift, boundedness of the expected value of the filter relates strongly to port- folio optimization: effects are studied and quantified. The derivation of an equivalent, less dimensional market is presented next. It is a type of Mutual Fund Theorem that is shown here. Gains and losses eminating from the use of filtering are then discussed in detail for different market parameters: For infrequent trading we find that both filters need to comply with the boundedness conditions to be an advan- tage for the investor. Losses are minimal in case the filters are advantageous. At an increasing number of stocks, again boundedness conditions need to be met. Losses in this case depend strongly on the added stocks. The relation of boundedness and portfolio optimization in the Markov model leads here to increasing losses for the investor if the boundedness condition is to hold for all numbers of stocks. In the Markov case, the losses for different numbers of states are negligible in case more states are assumed then were originally present. Assuming less states leads to high losses. Again for the Markov model, a simplification of the complex optimal trading strategy for power utility in the partial information setting is shown to cause only minor losses. If the market parameters are such that shortselling and borrowing constraints are in effect, these constraints may lead to big losses depending on how much effect the constraints have. They can though also be an advantage for the investor in case the expected value of the filters does not meet the conditions for boundedness. All results are implemented and illustrated with the corresponding numerical findings.

- Isogeometric finite element methods for shape optimization (2015)
- In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite general class of functions for representing optimal shapes is available. For the gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.

- Global existence for a degenerate haptotaxis model of cancer invasion (2015)
- We propose and study a strongly coupled PDE-ODE system with tissue-dependent degenerate diffusion and haptotaxis that can serve as a model prototype for cancer cell invasion through the extracellular matrix. We prove the global existence of weak solutions and illustrate the model behaviour by numerical simulations for a two-dimensional setting.

- Performance Analysis in Robust Optimization (2015)
- We discuss the problem of evaluating a robust solution. To this end, we first give a short primer on how to apply robustification approaches to uncertain optimization problems using the assignment problem and the knapsack problem as illustrative examples. As it is not immediately clear in practice which such robustness approach is suitable for the problem at hand, we present current approaches for evaluating and comparing robustness from the literature, and introduce the new concept of a scenario curve. Using the methods presented in this paper, an easy guide is given to the decision maker to find, solve and compare the best robust optimization method for his purposes.

- The Inductive Blockwise Alperin Weight Condition for the Finite Groups \( SL_3(q) \) \( (3 \nmid (q-1)) \), \( G_2(q) \) and \( ^3D_4(q) \) (2015)
- The central topic of this thesis is Alperin's weight conjecture, a problem concerning the representation theory of finite groups. This conjecture, which was first proposed by J. L. Alperin in 1986, asserts that for any finite group the number of its irreducible Brauer characters coincides with the number of conjugacy classes of its weights. The blockwise version of Alperin's conjecture partitions this problem into a question concerning the number of irreducible Brauer characters and weights belonging to the blocks of finite groups. A proof for this conjecture has not (yet) been found. However, the problem has been reduced to a question on non-abelian finite (quasi-) simple groups in the sense that there is a set of conditions, the so-called inductive blockwise Alperin weight condition, whose verification for all non-abelian finite simple groups implies the blockwise Alperin weight conjecture. Now the objective is to prove this condition for all non-abelian finite simple groups, all of which are known via the classification of finite simple groups. In this thesis we establish the inductive blockwise Alperin weight condition for three infinite series of finite groups of Lie type: the special linear groups \(SL_3(q)\) in the case \(q>2\) and \(q \not\equiv 1 \bmod 3\), the Chevalley groups \(G_2(q)\) for \(q \geqslant 5\), and Steinberg's triality groups \(^3D_4(q)\).

- Representative Systems and Decision Support for Multicriteria Optimization Problems (2015)
- In this thesis, we investigate several upcoming issues occurring in the context of conceiving and building a decision support system. We elaborate new algorithms for computing representative systems with special quality guarantees, provide concepts for supporting the decision makers after a representative system was computed, and consider a methodology of combining two optimization problems. We review the original Box-Algorithm for two objectives by Hamacher et al. (2007) and discuss several extensions regarding coverage, uniformity, the enumeration of the whole nondominated set, and necessary modifications if the underlying scalarization problem cannot be solved to optimality. In a next step, the original Box-Algorithm is extended to the case of three objective functions to compute a representative system with desired coverage error. Besides the investigation of several theoretical properties, we prove the correctness of the algorithm, derive a bound on the number of iterations needed by the algorithm to meet the desired coverage error, and propose some ideas for possible extensions. Furthermore, we investigate the problem of selecting a subset with desired cardinality from the computed representative system, the Hypervolume Subset Selection Problem (HSSP). We provide two new formulations for the bicriteria HSSP, a linear programming formulation and a \(k\)-link shortest path formulation. For the latter formulation, we propose an algorithm for which we obtain the currently best known complexity bound for solving the bicriteria HSSP. For the tricriteria HSSP, we propose an integer programming formulation with a corresponding branch-and-bound scheme. Moreover, we address the issue of how to present the whole set of computed representative points to the decision makers. Based on common illustration methods, we elaborate an algorithm guiding the decision makers in choosing their preferred solution. Finally, we step back and look from a meta-level on the issue of how to combine two given optimization problems and how the resulting combinations can be related to each other. We come up with several different combined formulations and give some ideas for the practical approach.

- Minimizing the Number of Apertures in Multileaf Collimator Sequencing with Field Splitting (2015)
- In this paper we consider the problem of decomposing a given integer matrix A into a positive integer linear combination of consecutive-ones matrices with a bound on the number of columns per matrix. This problem is of relevance in the realization stage of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf collimators with limited width. Constrained and unconstrained versions of the problem with the objectives of minimizing beam-on time and decomposition cardinality are considered. We introduce a new approach which can be used to find the minimum beam-on time for both constrained and unconstrained versions of the problem. The decomposition cardinality problem is shown to be NP-hard and an approach is proposed to solve the lexicographic decomposition problem of minimizing the decomposition cardinality subject to optimal beam-on time.