## Fachbereich Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (527)
- Doctoral Thesis (158)
- Report (35)
- Article (23)
- Diploma Thesis (20)
- Lecture (6)
- Study Thesis (2)
- Working Paper (2)
- Bachelor Thesis (1)
- Periodical (1)

#### Language

- English (775) (remove)

#### Keywords

- Wavelet (12)
- Inverses Problem (10)
- Mehrskalenanalyse (8)
- Boltzmann Equation (7)
- Location Theory (7)
- Approximation (6)
- Navier-Stokes-Gleichung (6)
- Elastoplastizität (5)
- Numerical Simulation (5)
- Algebraische Geometrie (4)

- Robust Flows with Losses and Improvability in Evacuation Planning (2014)
- We consider a network flow problem, where the outgoing flow is reduced by a certain percentage in each node. Given a maximum amount of flow that can leave the source node, the aim is to find a solution that maximizes the amount of flow which arrives at the sink. Starting from this basic model, we include two new, additional aspects: On the one hand, we are able to reduce the loss at some of the nodes; on the other hand, the exact loss values are not known, but may come from a discrete uncertainty set of exponential size. Applications for problems of this type can be found in evacuation planning, where one would like to improve the safety of nodes such that the number of evacuees reaching safety is maximized. We formulate the resulting robust flow problem with losses and improvability as a mixed-integer program for finitely many scenarios, and present an iterative scenario-generation procedure that avoids the inclusion of all scenarios from the beginning. In a computational study using both randomly generated instance and realistic data based on the city of Nice, France, we compare our solution algorithms.

- Transit Dependent Evacuation Planning for Kathmandu Valley: A Case Study (2014)
- Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered. In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

- Multilevel Constructions (2014)
- The thesis consists of the two chapters. The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time. In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.

- A Bicriteria Approach to Robust Optimization (2014)
- The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee. In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance. Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

- Robust Geometric Programming is co-NP hard (2014)
- Geometric Programming is a useful tool with a wide range of applications in engineering. As in real-world problems input data is likely to be affected by uncertainty, Hsiung, Kim, and Boyd introduced robust geometric programming to include the uncertainty in the optimization process. They also developed a tractable approximation method to tackle this problem. Further, they pose the question whether there exists a tractable reformulation of their robust geometric programming model instead of only an approximation method. We give a negative answer to this question by showing that robust geometric programming is co-NP hard in its natural posynomial form.

- Numerical solution of a nonstandard Darcy flow model (1999)
- We consider a Darcy flow model with saturation-pressure relation extended with a dynamic term, namely, the time derivative of the saturation. This model was proposed in works of J.Hulshof and J.R.King (1998), S.M.Hassanizadeh and W.G.Gray (1993), F.Stauffer (1978). We restrict ourself to one spatial dimension and strictly positive initial saturation. For this case we transform the initial-boundary value problem into combination of elliptic boundary-value problem and initial value problem for abstract Ordinary Differential Equation. This splitting is rather helpful both for theoretical aspects and numerical methods.

- Sink Location to Find Optimal Shelters in Evacuation Planning (2014)
- The sink location problem is a combination of network flow and location problems: From a given set of nodes in a flow network a minimum cost subset \(W\) has to be selected such that given supplies can be transported to the nodes in \(W\). In contrast to its counterpart, the source location problem which has already been studied in the literature, sinks have, in general, a limited capacity. Sink location has a decisive application in evacuation planning, where the supplies correspond to the number of evacuees and the sinks to emergency shelters. We classify sink location problems according to capacities on shelter nodes, simultaneous or non-simultaneous flows, and single or multiple assignments of evacuee groups to shelters. Resulting combinations are interpreted in the evacuation context and analyzed with respect to their worst-case complexity status. There are several approaches to tackle these problems: Generic solution methods for uncapacitated problems are based on source location and modifications of the network. In the capacitated case, for which source location cannot be applied, we suggest alternative approaches which work in the original network. It turns out that latter class algorithms are superior to the former ones. This is established in numerical tests including random data as well as real world data from the city of Kaiserslautern, Germany.

- A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions (2014)
- A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.

- Alternative Formulations for the Ordered Weighted Averaging Objective (2014)
- The ordered weighted averaging objective (OWA) is an aggregate function over multiple optimization criteria which received increasing attention by the research community over the last decade. Different to the ordered weighted sum, weights are attached to ordered objective functions (i.e., a weight for the largest value, a weight for the second-largest value and so on). As this contains max-min or worst-case optimization as a special case, OWA can also be considered as an alternative approach to robust optimization. For linear programs with OWA objective, compact reformulations exist, which result in extended linear programs. We present new such reformulation models with reduced size. A computational comparison indicates that these formulations improve solution times.

- On The Recoverable Robust Traveling Salesman Problem (2014)
- We consider an uncertain traveling salesman problem, where distances between nodes are not known exactly, but may stem from an uncertainty set of possible scenarios. This uncertainty set is given as intervals with an additional bound on the number of distances that may deviate from their expected, nominal value. A recoverable robust model is proposed, that allows a tour to change a bounded number of edges once a scenario becomes known. As the model contains an exponential number of constraints and variables, an iterative algorithm is proposed, in which tours and scenarios are computed alternately. While this approach is able to find a provably optimal solution to the robust model, it also needs to solve increasingly complex subproblems. Therefore, we also consider heuristic solution procedures based on local search moves using a heuristic estimate of the actual objective function. In computational experiments, these approaches are compared. Finally, an alternative recovery model is discussed, where a second-stage recovery tour is not required to visit all nodes of the graph. We show that the previously NP-hard evaluation of a fixed solution now becomes solvable in polynomial time.