## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (908)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (569)
- Dissertation (210)
- Bericht (39)
- Wissenschaftlicher Artikel (30)
- Diplomarbeit (25)
- Vorlesung (19)
- Teil eines Buches (Kapitel) (4)
- Studienarbeit (4)
- Arbeitspapier (4)
- Masterarbeit (2)

#### Volltext vorhanden

- ja (908) (entfernen)

#### Schlagworte

- Wavelet (12)
- Inverses Problem (10)
- Modellierung (10)
- Mathematikunterricht (9)
- Mehrskalenanalyse (9)
- praxisorientiert (9)
- Boltzmann Equation (7)
- Location Theory (7)
- MINT (7)
- Mathematische Modellierung (7)

- Graph Coloring Applications and Defining Sets in Graph Theory (2001)
- Abstract The main theme of this thesis is about Graph Coloring Applications and Defining Sets in Graph Theory. As in the case of block designs, finding defining sets seems to be difficult problem, and there is not a general conclusion. Hence we confine us here to some special types of graphs like bipartite graphs, complete graphs, etc. In this work, four new concepts of defining sets are introduced: • Defining sets for perfect (maximum) matchings • Defining sets for independent sets • Defining sets for edge colorings • Defining set for maximal (maximum) clique Furthermore, some algorithms to find and construct the defining sets are introduced. A review on some known kinds of defining sets in graph theory is also incorporated, in chapter 2 the basic definitions and some relevant notations used in this work are introduced. chapter 3 discusses the maximum and perfect matchings and a new concept for a defining set for perfect matching. Different kinds of graph colorings and their applications are the subject of chapter 4. Chapter 5 deals with defining sets in graph coloring. New results are discussed along with already existing research results, an algorithm is introduced, which enables to determine a defining set of a graph coloring. In chapter 6, cliques are discussed. An algorithm for the determination of cliques using their defining sets. Several examples are included.

- Portfolio Optimization with Risk Constraints in the View of Stochastic Interest Rates (2017)
- We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free financial market where a money market account, coupon bonds and a stock are traded continuously. We allow for stochastic interest rates and in particular consider one and two-factor Vasicek models for the instantaneous short rates. In both cases we consider a complete and an incomplete market setting by adding a suitable number of bonds. The goal of an investor is to find a portfolio which maximizes expected utility from terminal wealth under budget and present expected short-fall (PESF) risk constraints. We analyze this portfolio optimization problem in both complete and incomplete financial markets in three different cases: (a) when the PESF risk is minimum, (b) when the PESF risk is between minimum and maximum and (c) without risk constraints. (a) corresponds to the portfolio insurer problem, in (b) the risk constraint is binding, i.e., it is satisfied with equality, and (c) corresponds to the unconstrained Merton investment. In all cases we find the optimal terminal wealth and portfolio process using the martingale method and Malliavin calculus respectively. In particular we solve in the incomplete market settings the dual problem explicitly. We compare the optimal terminal wealth in the cases mentioned using numerical examples. Without risk constraints, we further compare the investment strategies for complete and incomplete market numerically.

- Asymptotics for change-point tests and change-point estimators (2017)
- In change-point analysis the point of interest is to decide if the observations follow one model or if there is at least one time-point, where the model has changed. This results in two sub- fields, the testing of a change and the estimation of the time of change. This thesis considers both parts but with the restriction of testing and estimating for at most one change-point. A well known example is based on independent observations having one change in the mean. Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was derived for this model. As it is a well-known fact that the corresponding convergence rate is very slow, modifications of the test using a weight function were considered. Those tests have a better performance. We focus on this class of test statistics. The first part gives a detailed introduction to the techniques for analysing test statistics and estimators. Therefore we consider the multivariate mean change model and focus on the effects of the weight function. In the case of change-point estimators we can distinguish between the assumption of a fixed size of change (fixed alternative) and the assumption that the size of the change is converging to 0 (local alternative). Especially, the fixed case in rarely analysed in the literature. We show how to come from the proof for the fixed alternative to the proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate observations. The main part of this thesis focuses on two points. First, analysing test statistics and, secondly, analysing the corresponding change-point estimators. In both cases, we first consider a change in the mean for independent observations but relaxing the moment condition. Based on a robust estimator for the mean, we derive a new type of change-point test having a randomized weight function. Secondly, we analyse non-linear autoregressive models with unknown regression function. Based on neural networks, test statistics and estimators are derived for correctly specified as well as for misspecified situations. This part extends the literature as we analyse test statistics and estimators not only based on the sample residuals. In both sections, the section on tests and the one on the change-point estimator, we end with giving regularity conditions on the model as well as the parameter estimator. Finally, a simulation study for the case of the neural network based test and estimator is given. We discuss the behaviour under correct and mis-specification and apply the neural network based test and estimator on two data sets.

- Having a Plan B for Robust Optimization (2017)
- We extend the standard concept of robust optimization by the introduction of an alternative solution. In contrast to the classic concept, one is allowed to chose two solutions from which the best can be picked after the uncertain scenario has been revealed. We focus in this paper on the resulting robust problem for combinatorial problems with bounded uncertainty sets. We present a reformulation of the robust problem which decomposes it into polynomially many subproblems. In each subproblem one needs to find two solutions which are connected by a cost function which penalizes if the same element is part of both solutions. Using this reformulation, we show how the robust problem can be solved efficiently for the unconstrained combinatorial problem, the selection problem, and the minimum spanning tree problem. The robust problem corresponding to the shortest path problem turns out to be NP-complete on general graphs. However, for series-parallel graphs, the robust shortest path problem can be solved efficiently. Further, we show how approximation algorithms for the subproblem can be used to compute approximate solutions for the original problem.

- Manifolds (2017)
- Lecture notes written to accompany a one semester course introducing to differential manifolds. Beyond the basic notions differential forms including Stokes' theorem are treated, as well as vector fields and flows on a differential manifold.

- A predictive-control framework to eliminate bus bunching (2016)
- Buses not arriving on time and then arriving all at once - this phenomenon is known from busy bus routes and is called bus bunching. This thesis combines the well studied but so far separate areas of bus-bunching prediction and dynamic holding strategies, which allow to modulate buses’ dwell times at stops to eliminate bus bunching. We look at real data of the Dublin Bus route 46A and present a headway-based predictive-control framework considering all components like data acquisition, prediction and control strategies. We formulate time headways as time series and compare several prediction methods for those. Furthermore we present an analytical model of an artificial bus route and discuss stability properties and dynamic holding strategies using both data available at the time and predicted headway data. In a numerical simulation we illustrate the advantages of the presented predictive-control framework compared to the classical approaches which only use directly available data.

- On a structured multiscale model for acid-mediated tumor invasion: the effects of adhesion and proliferation (2016)
- We propose a multiscale model for tumor cell migration in a tissue network. The system of equations involves a structured population model for the tumor cell density, which besides time and position depends on a further variable characterizing the cellular state with respect to the amount of receptors bound to soluble and insoluble ligands. Moreover, this equation features pH-taxis and adhesion, along with an integral term describing proliferation conditioned by receptor binding. The interaction of tumor cells with their surroundings calls for two more equations for the evolution of tissue fibers and acidity (expressed via concentration of extracellular protons), respectively. The resulting ODE-PDE system is highly nonlinear. We prove the global existence of a solution and perform numerical simulations to illustrate its behavior, paying particular attention to the influence of the supplementary structure and of the adhesion.

- Modeling Road Roughness with Conditional Random Fields (2016)
- A vehicles fatigue damage is a highly relevant figure in the complete vehicle design process. Long term observations and statistical experiments help to determine the influence of differnt parts of the vehicle, the driver and the surrounding environment. This work is focussing on modeling one of the most important influence factors of the environment: road roughness. The quality of the road is highly dependant on several surrounding factors which can be used to create mathematical models. Such models can be used for the extrapolation of information and an estimation of the environment for statistical studies. The target quantity we focus on in this work ist the discrete International Roughness Index or discrete IRI. The class of models we use and evaluate is a discriminative classification model called Conditional Random Field. We develop a suitable model specification and show new variants of stochastic optimizations to train the model efficiently. The model is also applied to simulated and real world data to show the strengths of our approach.

- Signature Standard Bases over Principal Ideal Rings (2016)
- By using Gröbner bases of ideals of polynomial algebras over a field, many implemented algorithms manage to give exciting examples and counter examples in Commutative Algebra and Algebraic Geometry. Part A of this thesis will focus on extending the concept of Gröbner bases and Standard bases for polynomial algebras over the ring of integers and its factors \(\mathbb{Z}_m[x]\). Moreover we implemented two algorithms for this case in Singular which use different approaches in detecting useless computations, the classical Buchberger algorithm and a F5 signature based algorithm. Part B includes two algorithms that compute the graded Hilbert depth of a graded module over a polynomial algebra \(R\) over a field, as well as the depth and the multigraded Stanley depth of a factor of monomial ideals of \(R\). The two algorithms provide faster computations and examples that lead B. Ichim and A. Zarojanu to a counter example of a question of J. Herzog. A. Duval, B. Goeckner, C. Klivans and J. Martin have recently discovered a counter example for the Stanley Conjecture. We prove in this thesis that the Stanley Conjecture holds in some special cases. Part D explores the General Neron Desingularization in the frame of Noetherian local domains of dimension 1. We have constructed and implemented in Singular and algorithm that computes a strong Artin Approximation for Cohen-Macaulay local rings of dimension 1.

- On a coupled SDE-PDE system modeling acid-mediated tumor invasion (2016)
- We propose and analyze a multiscale model for acid-mediated tumor invasion accounting for stochastic effects on the subcellular level. The setting involves a PDE of reaction-diffusion-taxis type describing the evolution of the tumor cell density, the movement being directed towards pH gradients in the local microenvironment, which is coupled to a PDE-SDE system characterizing the dynamics of extracellular and intracellular proton concentrations, respectively. The global well-posedness of the model is shown and numerical simulations are performed in order to illustrate the solution behavior.