## Fachbereich Mathematik

### Refine

#### Year of publication

#### Keywords

- Mathematikunterricht (3)
- Modellierung (3)
- Standortplanung (3)
- praxisorientiert (3)
- Combinatorial Optimization (2)
- Multicriteria optimization (2)
- Multiobjective programming (2)
- modelling (2)
- praxis orientated (2)
- Approximation Algorithms (1)

- Nadir Values: Computation and Use in Compromise Programming (2000)
- In this paper we investigate the problem offending the Nadir point for multicriteria optimization problems (MOP). The Nadir point is characterized by the component wise maximal values of efficient points for (MOP). It can be easily computed in the bicriteria case. However, in general this problem is very difficult. We review some existing methods and heuristics and propose some new ones. We propose a general method to compute Nadir values for the case of three objectives, based on theoretical results valid for any number of criteria. We also investigate the use of the Nadir point for compromise programming, when the goal is to be as far away as possible from the worst outcomes. We prove some results about (weak) Pareto optimality of the resulting solutions. The results are illustrated by examples.

- On the Number of Criteria Needed to Decide Pareto Optimality (2000)
- In this paper we address the question of how many objective functions are needed to decide whether a given point is a Pareto optimal solution for a multicriteria optimization problem. We extend earlier results showing that the set of weakly Pareto optimal points is the union of Pareto optimal sets of subproblems and show their limitations. We prove that for strictly quasi-convex problems in two variables Pareto optimality can be decided by consideration of at most three objectives at a time. Our results are based on a geometric characterization of Pareto, strict Pareto and weak Pareto solutions and Helly's Theorem. We also show that a generalization to quasi-convex objectives is not possible, and state a weaker result for this case. Furthermore, we show that a generalization to strictly Pareto optimal solutions is impossible, even in the convex case.

- An Annotated Bibliography of Multiobjective Combinatorial Optimization (2000)
- This paper provides an annotated bibliography of multiple objective combinatorial optimization, MOCO. We present a general formulation of MOCO problems, describe the main characteristics of MOCO problems, and review the main properties and theoretical results for these problems. One section is devoted to a brief description of the available solution methodology, both exact and heuristic. The main part of the paper is devoted to an annotation of the existing literature in the field organized problem by problem. We conclude the paper by stating open questions and areas of future research. The list of references comprises more than 350 entries.

- Min-Max Formulation of the Balance Number in Multiobjetive Global Optimization (1999)
- The notion of the balance number introduced in [3,page 139] through a certain set contraction procedure for nonscalarized multiobjective global optimization is represented via a min-max operation on the data of the problem. This representation yields a different computational procedure for the calculation of the balance number and allows us to generalize the approach for problems with countably many performance criteria.

- A Characterization of Lexicographic Max-Ordering Solutions (1999)
- In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

- On the number of Criteria Needed to Decide Pareto Optimality (1999)
- In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

- Geometric Methods to Solve Max-Ordering Location Problems (1999)
- Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

- Saddle Points and Pareto Points in Multiple Objective Programming (1999)
- In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.

- Discrete Decision Problems, Multiple Criteria Optimization Classes and Lexicographic Max-Ordering (1999)
- The topic of this paper are discrete decision problems with multiple criteria. We first define discrete multiple criteria decision problems and introduce a classification scheme for multiple criteria optimization problems. To do so we use multiople criteria optimization classes. The main result is a characterization of the class of lexicographic max-ordering problems by two very useful properties, reduction and regularity. Subsequently we discuss the assumptions under which the application of this specific MCO class is justified. Finally we provide (simple) solution methods to find optimal decisions in the case of discrete multiple criteria optimization problems.

- Bicriteria cost versus service analysis of the distribution network of a chemical company (1998)
- In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.