## Fachbereich Mathematik

The work consists of two parts.
In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided.
In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

In the theoretical part of this thesis, the difference of the solutions of the elastic and the elastoplastic boundary value problem is analysed, both for linear kinematic and combined linear kinematic and isotropic hardening material. We consider both models in their quasistatic, rate-independent formulation with linearised geometry. The main result of the thesis is, that the differences of the physical obervables (the stresses, strains and displacements) can be expressed as composition of some linear operators and play operators with respect to the exterior forces. Explicit homotopies between both solutions are presented. The main analytical devices are Lipschitz estimates for the stop and the play operator. We present some generalisations of the standard estimates. They allow different input functions, different initial memories and different scalar products. Thereby, the underlying time involving function spaces are the Sobolov spaces of first order with arbitrary integrability exponent between one and infinity. The main results can easily be generalised for the class of continuous functions with bounded total variation. In the practical part of this work, a method to correct the elastic stress tensor over a long time interval at some chosen points of the body is presented and analysed. In contrast to widespread uniaxial corrections (Neuber or ESED), our method takes multiaxiality phenomena like cyclic hardening/softening, ratchetting and non-masing behaviour into account using Jiang's model of elastoplasticity. It can be easily adapted to other constitutive elastoplastic material laws. The theory for our correction model is developped for linear kinematic hardening material, for which error estimated are derived. Our numerical algorithm is very fast and designed for the case that the elastic stress is piecewise linear. The results for the stresses can be significantly improved with Seeger's empirical strain constraint. For the improved model, a simple predictor-correcor algorithm for smooth input loading is established.