## Fachbereich Mathematik

### Refine

#### Year of publication

- 2014 (15) (remove)

#### Document Type

- Doctoral Thesis (15) (remove)

#### Keywords

- Debt Management (1)
- Eikonal equation (1)
- Erwarteter Nutzen (1)
- Pedestrian FLow (1)
- Portfolio Selection (1)

This thesis, whose subject is located in the field of algorithmic commutative algebra and algebraic geometry, consists of three parts.
The first part is devoted to parallelization, a technique which allows us to take advantage of the computational power of modern multicore processors. First, we present parallel algorithms for the normalization of a reduced affine algebra A over a perfect field. Starting from the algorithm of Greuel, Laplagne, and Seelisch, we propose two approaches. For the local-to-global approach, we stratify the singular locus Sing(A) of A, compute the normalization locally at each stratum and finally reconstruct the normalization of A from the local results. For the second approach, we apply modular methods to both the global and the local-to-global normalization algorithm.
Second, we propose a parallel version of the algorithm of Gianni, Trager, and Zacharias for primary decomposition. For the parallelization of this algorithm, we use modular methods for the computationally hardest steps, such as for the computation of the associated prime ideals in the zero-dimensional case and for the standard bases computations. We then apply an innovative fast method to verify that the result is indeed a primary decomposition of the input ideal. This allows us to skip the verification step at each of the intermediate modular computations.
The proposed parallel algorithms are implemented in the open-source computer algebra system SINGULAR. The implementation is based on SINGULAR's new parallel framework which has been developed as part of this thesis and which is specifically designed for applications in mathematical research.
In the second part, we propose new algorithms for the computation of syzygies, based on an in-depth analysis of Schreyer's algorithm. Here, the main ideas are that we may leave out so-called "lower order terms" which do not contribute to the result of the algorithm, that we do not need to order the terms of certain module elements which occur at intermediate steps, and that some partial results can be cached and reused.
Finally, the third part deals with the algorithmic classification of singularities over the real numbers. First, we present a real version of the Splitting Lemma and, based on the classification theorems of Arnold, algorithms for the classification of the simple real singularities. In addition to the algorithms, we also provide insights into how real and complex singularities are related geometrically. Second, we explicitly describe the structure of the equivalence classes of the unimodal real singularities of corank 2. We prove that the equivalences are given by automorphisms of a certain shape. Based on this theorem, we explain in detail how the structure of the equivalence classes can be computed using SINGULAR and present the results in concise form. The probably most surprising outcome is that the real singularity type \(J_{10}^-\) is actually redundant.

Die Dissertation "Portfoliooptimierung im Binomialmodell" befasst sich mit der Frage, inwieweit
das Problem der optimalen Portfolioauswahl im Binomialmodell lösbar ist bzw. inwieweit
die Ergebnisse auf das stetige Modell übertragbar sind. Dabei werden neben dem
klassischen Modell ohne Kosten und ohne Veränderung der Marktsituation auch Modellerweiterungen
untersucht.

In the theory of option pricing one is usually concerned with evaluating expectations under the risk-neutral measure in a continuous-time model.
However, very often these values cannot be calculated explicitly and numerical methods need to be applied to approximate the desired quantity. Monte Carlo simulations, numerical methods for PDEs and the lattice approach are the methods typically employed. In this thesis we consider the latter approach, with the main focus on binomial trees.
The binomial method is based on the concept of weak convergence. The discrete-time model is constructed so as to ensure convergence in distribution to the continuous process. This means that the expectations calculated in the binomial tree can be used as approximations of the option prices in the continuous model. The binomial method is easy to implement and can be adapted to options with different types of payout structures, including American options. This makes the approach very appealing. However, the problem is that in many cases, the convergence of the method is slow and highly irregular, and even a fine discretization does not guarantee accurate price approximations. Therefore, ways of improving the convergence properties are required.
We apply Edgeworth expansions to study the convergence behavior of the lattice approach. We propose a general framework, that allows to obtain asymptotic expansion for both multinomial and multidimensional trees. This information is then used to construct advanced models with superior convergence properties.
In binomial models we usually deal with triangular arrays of lattice random vectors. In this case the available results on Edgeworth expansions for lattices are not directly applicable. Therefore, we first present Edgeworth expansions, which are also valid for the binomial tree setting. We then apply these result to the one-dimensional and multidimensional Black-Scholes models. We obtain third order expansions
for general binomial and trinomial trees in the 1D setting, and construct advanced models for digital, vanilla and barrier options. Second order expansion are provided for the standard 2D binomial trees and advanced models are constructed for the two-asset digital and the two-asset correlation options. We also present advanced binomial models for a multidimensional setting.

This thesis focuses on dealing with some new aspects of continuous time portfolio optimization by using the stochastic control method.
First, we extend the Busch-Korn-Seifried model for a large investor by using the Vasicek model for the short rate, and that problem is solved explicitly for two types of intensity functions.
Next, we justify the existence of the constant proportion portfolio insurance (CPPI) strategy in a framework containing a stochastic short rate and a Markov switching parameter. The effect of Vasicek short rate on the CPPI strategy has been studied by Horsky (2012). This part of the thesis extends his research by including a Markov switching parameter, and the generalization is based on the B\"{a}uerle-Rieder investment problem. The explicit solutions are obtained for the portfolio problem without the Money Market Account as well as the portfolio problem with the Money Market Account.
Finally, we apply the method used in Busch-Korn-Seifried investment problem to explicitly solve the portfolio optimization with a stochastic benchmark.

Multilevel Constructions
(2014)

The thesis consists of the two chapters.
The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time.
In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.

In this thesis, we combine Groebner basis with SAT Solver in different manners.
Both SAT solvers and Groebner basis techniques have their own strength and weakness.
Combining them could fix their weakness.
The first combination is using Groebner techniques to learn additional binary clauses for SAT solver from a selection of clauses. This combination is first proposed by Zengler and Kuechlin.
However, in our experiments, about 80 percent Groebner basis computations give no new binary clauses.
By selecting smaller and more compact input for Groebner basis computations, we can significantly
reduce the number of inefficient Groebner basis computations, learn much more binary clauses. In addition,
the new strategy can reduce the solving time of a SAT Solver in general, especially for large and hard problems.
The second combination is using all-solution SAT solver and interpolation to compute Boolean Groebner bases of Boolean elimination ideals of a given ideal. Computing Boolean Groebner basis of the given ideal is an inefficient method in case we want to eliminate most of the variables from a big system of Boolean polynomials.
Therefore, we propose a more efficient approach to handle such cases.
In this approach, the given ideal is translated to the CNF formula. Then an all-solution SAT Solver is used to find the projection of all solutions of the given ideal. Finally, an algorithm, e.g. Buchberger-Moeller Algorithm, is used to associate the reduced Groebner basis to the projection.
We also optimize the Buchberger-Moeller Algorithm for lexicographical ordering and compare it with Brickenstein's interpolation algorithm.
Finally, we combine Groebner basis and abstraction techniques to the verification of some digital designs that contain complicated data paths.
For a given design, we construct an abstract model.
Then, we reformulate it as a system of polynomials in the ring \({\mathbb Z}_{2^k}[x_1,\dots,x_n]\).
The variables are ordered in a way such that the system has already been a Groebner basis w.r.t lexicographical monomial ordering.
Finally, the normal form is employed to prove the desired properties.
To evaluate our approach, we verify the global property of a multiplier and a FIR filter using the computer algebra system Singular. The result shows that our approach is much faster than the commercial verification tool from Onespin on these benchmarks.

Das zinsoptimierte Schuldenmanagement hat zum Ziel, eine möglichst effiziente Abwägung zwischen den erwarteten Finanzierungskosten einerseits und den Risiken für den Staatshaushalt andererseits zu finden. Um sich diesem Spannungsfeld zu nähern, schlagen wir erstmals die Brücke zwischen den Problemstellungen des Schuldenmanagements und den Methoden der zeitkontinuierlichen, dynamischen Portfoliooptimierung.
Das Schlüsselelement ist dabei eine neue Metrik zur Messung der Finanzierungskosten, die Perpetualkosten. Diese spiegeln die durchschnittlichen zukünftigen Finanzierungskosten wider und beinhalten sowohl die bereits bekannten Zinszahlungen als auch die noch unbekannten Kosten für notwendige Anschlussfinanzierungen. Daher repräsentiert die Volatilität der Perpetualkosten auch das Risiko einer bestimmten Strategie; je langfristiger eine Finanzierung ist, desto kleiner ist die Schwankungsbreite der Perpetualkosten.
Die Perpetualkosten ergeben sich als Produkt aus dem Barwert eines Schuldenportfolios und aus der vom Portfolio unabhängigen Perpetualrate. Für die Modellierung des Barwertes greifen wir auf das aus der dynamischen Portfoliooptimierung bekannte Konzept eines selbstfinanzierenden Bondportfolios zurück, das hier auf einem mehrdimensionalen affin-linearen Zinsmodell basiert. Das Wachstum des Schuldenportfolios wird dabei durch die Einbeziehung des Primärüberschusses des Staates gebremst bzw. verhindert, indem wir diesen als externen Zufluss in das selbstfinanzierende Modell aufnehmen.
Wegen der Vielfältigkeit möglicher Finanzierungsinstrumente wählen wir nicht deren Wertanteile als Kontrollvariable, sondern kontrollieren die Sensitivitäten des Portfolios gegenüber verschiedenen Zinsbewegungen. Aus optimalen Sensitivitäten können in einem nachgelagerten Schritt dann optimale Wertanteile für verschiedenste Finanzierungsinstrumente abgeleitet werden. Beispielhaft demonstrieren wir dies mittels Rolling-Horizon-Bonds unterschiedlicher Laufzeit.
Schließlich lösen wir zwei Optimierungsprobleme mit Methoden der stochastischen Kontrolltheorie. Dabei wird stets der erwartete Nutzen der Perpetualkosten maximiert. Die Nutzenfunktionen sind jeweils an das Schuldenmanagement angepasst und zeichnen sich insbesondere dadurch aus, dass höhere Kosten mit einem niedrigeren Nutzen einhergehen. Im ersten Problem betrachten wir eine Potenznutzenfunktion mit konstanter relativer Risikoaversion, im zweiten wählen wir eine Nutzenfunktion, welche die Einhaltung einer vorgegebenen Schulden- bzw. Kostenobergrenze garantiert.

In automotive testrigs we apply load time series to components such that the outcome is as close as possible to some reference data. The testing procedure should in general be less expensive and at the same time take less time for testing. In my thesis, I propose a testrig damage optimization problem (WSDP). This approach improves upon the testrig stress optimization problem (TSOP) used as a state of the art by industry experts.
In both (TSOP) and (WSDP), we optimize the load time series for a given testrig configuration. As the name suggests, in (TSOP) the reference data is the stress time series. The detailed behaviour of the stresses as functions of time are sometimes not the most important topic. Instead the damage potential of the stress signals are considered. Since damage is not part of the objectives in the (TSOP) the total damage computed from the optimized load time series is not optimal with respect to the reference damage. Additionally, the load time series obtained is as long as the reference stress time series and the total damage computation needs cycle counting algorithms and Goodmann corrections. The use of cycle counting algorithms makes the computation of damage from load time series non-differentiable.
To overcome the issues discussed in the previous paragraph this thesis uses block loads for the load time series. Using of block loads makes the damage differentiable with respect to the load time series. Additionally, in some special cases it is shown that damage is convex when block loads are used and no cycle counting algorithms are required. Using load time series with block loads enables us to use damage in the objective function of the (WSDP).
During every iteration of the (WSDP), we have to find the maximum total damage over all plane angles. The first attempt at solving the (WSDP) uses discretization of the interval for plane angle to find the maximum total damage at each iteration. This is shown to give unreliable results and makes maximum total damage function non-differentiable with respect to the plane angle. To overcome this, damage function for a given surface stress tensor due to a block load is remodelled by Gaussian functions. The parameters for the new model are derived.
When we model the damage by Gaussian function, the total damage is computed as a sum of Gaussian functions. The plane with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM), the difference being that the Gaussian functions used in GMM are probability density functions which is not the case in the damage approximation presented in this work. We derive conditions for a single maximum for Gaussian functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [1].
By using the conditions for a single maximum we give a clustering algorithm that merges the Gaussian functions in the sum as clusters. Each cluster obtained through clustering is such that it has a single maximum in the absence of other Gaussian functions of the sum. The approximate point of the maximum of each cluster is used as the starting point for a fixed point equation on the original damage function to get the actual maximum total damage at each iteration.
We implement the method for the (TSOP) and the two methods (with discretization and with clustering) for (WSDP) on two example problems. The results obtained from the (WSDP) using discretization is shown to be better than the results obtained from the (TSOP). Furthermore we show that, (WSDP) using clustering approach to finding the maximum total damage, takes less number of iterations and is more reliable than using discretization.

Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors.
Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study.
The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.

This thesis is devoted to the modeling and simulation of Asymmetric Flow Field Flow Fractionation, which is a technique for separating particles of submicron scale. This process is a part of large family of Field Flow Fractionation techniques and has a very broad range of industrial applications, e. g. in microbiology, chemistry, pharmaceutics, environmental analysis.
Mathematical modeling is crucial for this process, as due to the own nature of the process, lab ex- periments are difficult and expensive to perform. On the other hand, there are several challenges for the mathematical modeling: huge dominance (up to 106 times) of the flow over the diffusion, highly stretched geometry of the device. This work is devoted to developing fast and efficient algorithms, which take into the account the challenges, posed by the application, and provide reliable approximations for the quantities of interest.
We present a new Multilevel Monte Carlo method for estimating the distribution functions on a compact interval, which are of the main interest for Asymmetric Flow Field Flow Fractionation. Error estimates for this method in terms of computational cost are also derived.
We optimize the flow control at the Focusing stage under the given constraints on the flow and present an important ingredients for the further optimization, such as two-grid Reduced Basis method, specially adapted for the Finite Volume discretization approach.

In 2006 Jeffrey Achter proved that the distribution of divisor class groups of degree 0 of function fields with a fixed genus and the distribution of eigenspaces in symplectic similitude groups are closely related to each other. Gunter Malle proposed that there should be a similar correspondence between the distribution of class groups of number fields and the distribution of eigenspaces in ceratin matrix groups. Motivated by these results and suggestions we study the distribution of eigenspaces corresponding to the eigenvalue one in some special subgroups of the general linear group over factor rings of rings of integers of number fields and derive some conjectural statements about the distribution of \(p\)-parts of class groups of number fields over a base field \(K_{0}\). Where our main interest lies in the case that \(K_{0}\) contains the \(p\)th roots of unity, because in this situation the \(p\)-parts of class groups seem to behave in an other way like predicted by the popular conjectures of Henri Cohen and Jacques Martinet. In 2010 based on computational data Malle has succeeded in formulating a conjecture in the spirit of Cohen and Martinet for this case. Here using our investigations about the distribution in matrixgroups we generalize the conjecture of Malle to a more abstract level and establish a theoretical backup for these statements.

This thesis is devoted to the computational aspects of intersection theory and enumerative geometry. The first results are a Sage package Schubert3 and a Singular library schubert.lib which both provide the key functionality necessary for computations in intersection theory and enumerative geometry. In particular, we describe an alternative method for computations in Schubert calculus via equivariant intersection theory. More concretely, we propose an explicit formula for computing the degree of Fano schemes of linear subspaces on hypersurfaces. As a special case, we also obtain an explicit formula for computing the number of linear subspaces on a general hypersurface when this number is finite. This leads to a much better performance than classical Schubert calculus.
Another result of this thesis is related to the computation of Gromov-Witten invariants. The most powerful method for computing Gromov-Witten invariants is the localization of moduli spaces of stable maps. This method was introduced by Kontsevich in 1995. It allows us to compute Gromov-Witten invariants via Bott's formula. As an insightful application, we computed the numbers of rational curves on general complete intersection Calabi-Yau threefolds in projective spaces up to degree six. The results are all in agreement with predictions made from mirror symmetry.

In the first part of this thesis we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.
In the second part we apply the algorithmic toolkit developed in the first part to the study of tropical double Hurwitz cycles. Hurwitz cycles are a higher-dimensional generalization of Hurwitz numbers, which count covers of \(\mathbb{P}^1\) by smooth curves of a given genus with a certain fixed ramification behaviour. Double Hurwitz numbers provide a strong connection between various mathematical disciplines, including algebraic geometry, representation theory and combinatorics. The tropical cycles have a rather complex combinatorial nature, so it is very difficult to study them purely "by hand". Being able to compute examples has been very helpful
in coming up with theoretical results. Our main result states that all marked and unmarked Hurwitz cycles are connected in codimension one and that for a generic choice of simple ramification points the marked cycle is a multiple of an irreducible cycle. In addition we provide computational examples to show that this is the strongest possible statement.

Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall
modeling and simulation of physical and chemical processes occuring in the course of an accident
is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor tech-
nology and computer programming. The aim of the study is therefore to create the foundations
of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based
on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under
different working and accident conditions, and to develop proper action plans for minimizing the
risks of accidents, and/or minimizing the consequences of possible accidents. A very large number
of scenarios have to be simulated, and at the same time acceptable accuracy for the critical param-
eters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software
tools are either too slow, or not accurate enough. This thesis deals with developing customized al-
gorithm and software tools for simulation of isothermal and non-isothermal flows in a containment
pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented.
The goal of the work is to achieve a balance between accuracy and speed of calculation, and to
develop customized algorithm for this special case. Different discretization and solution approaches
are studied and those which correspond best to the formulated goal are selected, adjusted, and when
possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated
geometries, in presence of solid and porous obstales, is in the core of the algorithm. Developing
suitable pre-processor and customized domain decomposition algorithms are essential part of the
overall algorithm amd software. Results from numerical simulations in test geometries and in real
geometries are presented and discussed.

Pedestrian Flow Models
(2014)

There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries.