## Fachbereich Mathematik

This thesis is devoted to two main topics (accordingly, there are two chapters): In the first chapter, we establish a tropical intersection theory with analogue notions and tools as its algebro-geometric counterpart. This includes tropical cycles, rational functions, intersection products of Cartier divisors and cycles, morphisms, their functors and the projection formula, rational equivalence. The most important features of this theory are the following: - It unifies and simplifies many of the existing results of tropical enumerative geometry, which often contained involved ad-hoc computations. - It is indispensable to formulate and solve further tropical enumerative problems. - It shows deep relations to the intersection theory of toric varieties and connected fields. - The relationship between tropical and classical Gromov-Witten invariants found by Mikhalkin is made plausible from inside tropical geometry. - It is interesting on its own as a subfield of convex geometry. In the second chapter, we study tropical gravitational descendants (i.e. Gromov-Witten invariants with incidence and "Psi-class" factors) and show that many concepts of the classical Gromov-Witten theory such as the famous WDVV equations can be carried over to the tropical world. We use this to extend Mikhalkin's results to a certain class of gravitational descendants, i.e. we show that many of the classical gravitational descendants of P^2 and P^1 x P^1 can be computed by counting tropical curves satisfying certain incidence conditions and with prescribed valences of their vertices. Moreover, the presented theory is not restricted to plane curves and therefore provides an important tool to derive similar results in higher dimensions. A more detailed chapter synopsis can be found at the beginning of each individual chapter.

Tropical intersection theory
(2010)

This thesis consists of five chapters: Chapter 1 contains the basics of the theory and is essential for the rest of the thesis. Chapters 2-5 are to a large extent independent of each other and can be read separately. - Chapter 1: Foundations of tropical intersection theory In this first chapter we set up the foundations of a tropical intersection theory covering many concepts and tools of its counterpart in algebraic geometry such as affine tropical cycles, Cartier divisors, morphisms of tropical cycles, pull-backs of Cartier divisors, push-forwards of cycles and an intersection product of Cartier divisors and cycles. Afterwards, we generalize these concepts to abstract tropical cycles and introduce a concept of rational equivalence. Finally, we set up an intersection product of cycles and prove that every cycle is rationally equivalent to some affine cycle in the special case that our ambient cycle is R^n. We use this result to show that rational and numerical equivalence agree in this case and prove a tropical Bézout's theorem. - Chapter 2: Tropical cycles with real slopes and numerical equivalence In this chapter we generalize our definitions of tropical cycles to polyhedral complexes with non-rational slopes. We use this new definition to show that if our ambient cycle is a fan then every subcycle is numerically equivalent to some affine cycle. Finally, we restrict ourselves to cycles in R^n that are "generic" in some sense and study the concept of numerical equivalence in more detail. - Chapter 3: Tropical intersection products on smooth varieties We define an intersection product of tropical cycles on tropical linear spaces L^n_k and on other, related fans. Then, we use this result to obtain an intersection product of cycles on any "smooth" tropical variety. Finally, we use the intersection product to introduce a concept of pull-backs of cycles along morphisms of smooth tropical varieties and prove that this pull-back has all expected properties. - Chapter 4: Weil and Cartier divisors under tropical modifications First, we introduce "modifications" and "contractions" and study their basic properties. After that, we prove that under some further assumptions a one-to-one correspondence of Weil and Cartier divisors is preserved by modifications. In particular we can prove that on any smooth tropical variety we have a one-to-one correspondence of Weil and Cartier divisors. - Chapter 5: Chern classes of tropical vector bundles We give definitions of tropical vector bundles and rational sections of tropical vector bundles. We use these rational sections to define the Chern classes of such a tropical vector bundle. Moreover, we prove that these Chern classes have all expected properties. Finally, we classify all tropical vector bundles on an elliptic curve up to isomorphisms.