## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Dissertation (226) (entfernen)

#### Schlagworte

- Algebraische Geometrie (6)
- Finanzmathematik (5)
- Optimization (5)
- Portfolio Selection (5)
- Stochastische dynamische Optimierung (5)
- Navier-Stokes-Gleichung (4)
- Numerische Mathematik (4)
- Portfolio-Optimierung (4)
- portfolio optimization (4)
- Computeralgebra (3)
- Elastizität (3)
- Erwarteter Nutzen (3)
- Finite-Volumen-Methode (3)
- Gröbner-Basis (3)
- Homogenisierung <Mathematik> (3)
- Inverses Problem (3)
- Numerische Strömungssimulation (3)
- Optionspreistheorie (3)
- Portfoliomanagement (3)
- Transaction Costs (3)
- Tropische Geometrie (3)
- Wavelet (3)
- optimales Investment (3)
- Asymptotic Expansion (2)
- Asymptotik (2)
- Bewertung (2)
- Derivat <Wertpapier> (2)
- Elasticity (2)
- Endliche Geometrie (2)
- Erdmagnetismus (2)
- Filtergesetz (2)
- Filtration (2)
- Finite Pointset Method (2)
- Geometric Ergodicity (2)
- Hamilton-Jacobi-Differentialgleichung (2)
- Hochskalieren (2)
- IMRT (2)
- Kreditrisiko (2)
- Level-Set-Methode (2)
- Lineare Elastizitätstheorie (2)
- Local smoothing (2)
- Mehrskalenanalyse (2)
- Mehrskalenmodell (2)
- Modulraum (2)
- Partial Differential Equations (2)
- Partielle Differentialgleichung (2)
- Portfolio Optimization (2)
- Poröser Stoff (2)
- Regularisierung (2)
- Schnitttheorie (2)
- Stochastic Control (2)
- Stochastische Differentialgleichung (2)
- Transaktionskosten (2)
- Upscaling (2)
- Vektorwavelets (2)
- White Noise Analysis (2)
- curve singularity (2)
- domain decomposition (2)
- duality (2)
- finite volume method (2)
- geomagnetism (2)
- homogenization (2)
- illiquidity (2)
- interface problem (2)
- isogeometric analysis (2)
- mesh generation (2)
- optimal investment (2)
- splines (2)
- "Slender-Body"-Theorie (1)
- 3D image analysis (1)
- A-infinity-bimodule (1)
- A-infinity-category (1)
- A-infinity-functor (1)
- Ableitungsfreie Optimierung (1)
- Advanced Encryption Standard (1)
- Algebraic dependence of commuting elements (1)
- Algebraic geometry (1)
- Algebraische Abhängigkeit der kommutierende Elementen (1)
- Algebraischer Funktionenkörper (1)
- Analysis (1)
- Annulus (1)
- Anti-diffusion (1)
- Antidiffusion (1)
- Approximationsalgorithmus (1)
- Arbitrage (1)
- Arc distance (1)
- Archimedische Kopula (1)
- Asiatische Option (1)
- Asympotic Analysis (1)
- Asymptotic Analysis (1)
- Asymptotische Entwicklung (1)
- Ausfallrisiko (1)
- Automorphismengruppe (1)
- Autoregressive Hilbertian model (1)
- B-Spline (1)
- Barriers (1)
- Basket Option (1)
- Bayes-Entscheidungstheorie (1)
- Beam models (1)
- Beam orientation (1)
- Beschichtungsprozess (1)
- Beschränkte Krümmung (1)
- Betrachtung des Schlimmstmöglichen Falles (1)
- Bildsegmentierung (1)
- Binomialbaum (1)
- Biorthogonalisation (1)
- Biot Poroelastizitätgleichung (1)
- Biot-Savart Operator (1)
- Biot-Savart operator (1)
- Boltzmann Equation (1)
- Bondindizes (1)
- Bootstrap (1)
- Boundary Value Problem / Oblique Derivative (1)
- Brinkman (1)
- Brownian Diffusion (1)
- Brownian motion (1)
- Brownsche Bewegung (1)
- CDO (1)
- CDS (1)
- CDSwaption (1)
- CFD (1)
- CHAMP (1)
- CPDO (1)
- Castelnuovo Funktion (1)
- Castelnuovo function (1)
- Cauchy-Navier-Equation (1)
- Cauchy-Navier-Gleichung (1)
- Censoring (1)
- Center Location (1)
- Change Point Analysis (1)
- Change Point Test (1)
- Change-point Analysis (1)
- Change-point estimator (1)
- Change-point test (1)
- Charakter <Gruppentheorie> (1)
- Chi-Quadrat-Test (1)
- Cholesky-Verfahren (1)
- Chow Quotient (1)
- Circle Location (1)
- Coarse graining (1)
- Cohen-Lenstra heuristic (1)
- Combinatorial Optimization (1)
- Commodity Index (1)
- Computer Algebra (1)
- Computer Algebra System (1)
- Computer algebra (1)
- Computeralgebra System (1)
- Conditional Value-at-Risk (1)
- Consistencyanalysis (1)
- Consistent Price Processes (1)
- Construction of hypersurfaces (1)
- Copula (1)
- Coupled PDEs (1)
- Crash (1)
- Crash Hedging (1)
- Crash modelling (1)
- Crashmodellierung (1)
- Credit Default Swap (1)
- Credit Risk (1)
- Curvature (1)
- Curved viscous fibers (1)
- DSMC (1)
- Darstellungstheorie (1)
- Das Urbild von Ideal unter einen Morphismus der Algebren (1)
- Debt Management (1)
- Defaultable Options (1)
- Deformationstheorie (1)
- Delaunay (1)
- Delaunay triangulation (1)
- Delaunay triangulierung (1)
- Differenzenverfahren (1)
- Differenzmenge (1)
- Diffusion (1)
- Diffusion processes (1)
- Diffusionsprozess (1)
- Discriminatory power (1)
- Diskrete Fourier-Transformation (1)
- Dispersionsrelation (1)
- Dissertation (1)
- Druckkorrektur (1)
- Dünnfilmapproximation (1)
- EM algorithm (1)
- Edwards Model (1)
- Effective Conductivity (1)
- Efficiency (1)
- Effizienter Algorithmus (1)
- Effizienz (1)
- Eikonal equation (1)
- Elastische Deformation (1)
- Elastoplastizität (1)
- Elektromagnetische Streuung (1)
- Eliminationsverfahren (1)
- Elliptische Verteilung (1)
- Elliptisches Randwertproblem (1)
- Endliche Gruppe (1)
- Endliche Lie-Gruppe (1)
- Entscheidungsbaum (1)
- Entscheidungsunterstützung (1)
- Enumerative Geometrie (1)
- Erdöl Prospektierung (1)
- Erwartungswert-Varianz-Ansatz (1)
- Expected shortfall (1)
- Exponential Utility (1)
- Exponentieller Nutzen (1)
- Extrapolation (1)
- Extreme Events (1)
- Extreme value theory (1)
- FEM (1)
- FFT (1)
- FPM (1)
- Faden (1)
- Fatigue (1)
- Feedfoward Neural Networks (1)
- Feynman Integrals (1)
- Feynman path integrals (1)
- Fiber suspension flow (1)
- Financial Engineering (1)
- Finanzkrise (1)
- Finanznumerik (1)
- Finite-Elemente-Methode (1)
- Finite-Punktmengen-Methode (1)
- Firmwertmodell (1)
- First Order Optimality System (1)
- Flachwasser (1)
- Flachwassergleichungen (1)
- Fluid dynamics (1)
- Fluid-Feststoff-Strömung (1)
- Fluid-Struktur-Wechselwirkung (1)
- Foam decay (1)
- Fokker-Planck-Gleichung (1)
- Forward-Backward Stochastic Differential Equation (1)
- Fourier-Transformation (1)
- Fredholmsche Integralgleichung (1)
- Functional autoregression (1)
- Functional time series (1)
- Funktionenkörper (1)
- GARCH (1)
- GARCH Modelle (1)
- Galerkin-Methode (1)
- Gamma-Konvergenz (1)
- Garbentheorie (1)
- Gebietszerlegung (1)
- Gebietszerlegungsmethode (1)
- Gebogener viskoser Faden (1)
- Geodesie (1)
- Geometrische Ergodizität (1)
- Gewichteter Sobolev-Raum (1)
- Gittererzeugung (1)
- Gleichgewichtsstrategien (1)
- Granular flow (1)
- Granulat (1)
- Gravitationsfeld (1)
- Gromov Witten (1)
- Gromov-Witten-Invariante (1)
- Große Abweichung (1)
- Gruppenoperation (1)
- Gruppentheorie (1)
- Gröbner bases (1)
- Gröbner-basis (1)
- Gyroscopic (1)
- Hadamard manifold (1)
- Hadamard space (1)
- Hadamard-Mannigfaltigkeit (1)
- Hadamard-Raum (1)
- Hamiltonian Path Integrals (1)
- Handelsstrategien (1)
- Harmonische Analyse (1)
- Harmonische Spline-Funktion (1)
- Hazard Functions (1)
- Heavy-tailed Verteilung (1)
- Hedging (1)
- Helmholtz Type Boundary Value Problems (1)
- Heston-Modell (1)
- Hidden Markov models for Financial Time Series (1)
- Hierarchische Matrix (1)
- Homogenization (1)
- Homologische Algebra (1)
- Hub Location Problem (1)
- Hydrostatischer Druck (1)
- Hyperelliptische Kurve (1)
- Hyperflächensingularität (1)
- Hyperspektraler Sensor (1)
- Hysterese (1)
- ITSM (1)
- Idealklassengruppe (1)
- Illiquidität (1)
- Image restoration (1)
- Immiscible lattice BGK (1)
- Immobilienaktie (1)
- Inflation (1)
- Infrarotspektroskopie (1)
- Intensität (1)
- Internationale Diversifikation (1)
- Inverse Problem (1)
- Irreduzibler Charakter (1)
- Isogeometrische Analyse (1)
- Ito (1)
- Jacobigruppe (1)
- Kanalcodierung (1)
- Karhunen-Loève expansion (1)
- Kategorientheorie (1)
- Kelvin Transformation (1)
- Kirchhoff-Love shell (1)
- Kiyoshi (1)
- Kombinatorik (1)
- Kommutative Algebra (1)
- Konjugierte Dualität (1)
- Konstruktion von Hyperflächen (1)
- Kontinuum <Mathematik> (1)
- Kontinuumsphysik (1)
- Konvergenz (1)
- Konvergenzrate (1)
- Konvergenzverhalten (1)
- Konvexe Optimierung (1)
- Kopplungsmethoden (1)
- Kopplungsproblem (1)
- Kopula <Mathematik> (1)
- Kreitderivaten (1)
- Kryptoanalyse (1)
- Kryptologie (1)
- Krümmung (1)
- Kullback-Leibler divergence (1)
- Kurvenschar (1)
- LIBOR (1)
- Lagrangian relaxation (1)
- Laplace transform (1)
- Lattice Boltzmann (1)
- Lattice-BGK (1)
- Lattice-Boltzmann (1)
- Leading-Order Optimality (1)
- Level set methods (1)
- Lie-Typ-Gruppe (1)
- Lineare partielle Differentialgleichung (1)
- Lippmann-Schwinger equation (1)
- Liquidität (1)
- Locally Supported Zonal Kernels (1)
- Location (1)
- MBS (1)
- MKS (1)
- Macaulay’s inverse system (1)
- Magnetoelastic coupling (1)
- Magnetoelasticity (1)
- Magnetostriction (1)
- Marangoni-Effekt (1)
- Markov Chain (1)
- Markov Kette (1)
- Markov-Ketten-Monte-Carlo-Verfahren (1)
- Markov-Prozess (1)
- Marktmanipulation (1)
- Marktrisiko (1)
- Martingaloptimalitätsprinzip (1)
- Mathematical Finance (1)
- Mathematik (1)
- Mathematisches Modell (1)
- Matrixkompression (1)
- Matrizenfaktorisierung (1)
- Matrizenzerlegung (1)
- Maximal Cohen-Macaulay modules (1)
- Maximale Cohen-Macaulay Moduln (1)
- Maximum Likelihood Estimation (1)
- Maximum-Likelihood-Schätzung (1)
- Maxwell's equations (1)
- McKay-Conjecture (1)
- McKay-Vermutung (1)
- Mehrdimensionale Bildverarbeitung (1)
- Mehrdimensionales Variationsproblem (1)
- Mehrkriterielle Optimierung (1)
- Mehrskalen (1)
- Mie- and Helmholtz-Representation (1)
- Mie- und Helmholtz-Darstellung (1)
- Mikroelektronik (1)
- Mikrostruktur (1)
- Mixed integer programming (1)
- Modellbildung (1)
- Molekulardynamik (1)
- Momentum and Mas Transfer (1)
- Monte Carlo (1)
- Monte-Carlo-Simulation (1)
- Moreau-Yosida regularization (1)
- Morphismus (1)
- Mosco convergence (1)
- Multi Primary and One Second Particle Method (1)
- Multi-Asset Option (1)
- Multicriteria optimization (1)
- Multileaf collimator (1)
- Multiperiod planning (1)
- Multiphase Flows (1)
- Multiresolution Analysis (1)
- Multiscale modelling (1)
- Multiskalen-Entrauschen (1)
- Multispektralaufnahme (1)
- Multispektralfotografie (1)
- Multivariate Analyse (1)
- Multivariate Wahrscheinlichkeitsverteilung (1)
- Multivariates Verfahren (1)
- NURBS (1)
- Networks (1)
- Netzwerksynthese (1)
- Neural Networks (1)
- Neuronales Netz (1)
- Nicht-Desarguessche Ebene (1)
- Nichtglatte Optimierung (1)
- Nichtkommutative Algebra (1)
- Nichtkonvexe Optimierung (1)
- Nichtkonvexes Variationsproblem (1)
- Nichtlineare Approximation (1)
- Nichtlineare Diffusion (1)
- Nichtlineare Optimierung (1)
- Nichtlineare Zeitreihenanalyse (1)
- Nichtlineare partielle Differentialgleichung (1)
- Nichtpositive Krümmung (1)
- Niederschlag (1)
- No-Arbitrage (1)
- Non-commutative Computer Algebra (1)
- Nonlinear Optimization (1)
- Nonlinear time series analysis (1)
- Nonparametric time series (1)
- Nulldimensionale Schemata (1)
- Numerical Flow Simulation (1)
- Numerical methods (1)
- Numerische Mathematik / Algorithmus (1)
- Numerisches Verfahren (1)
- Oberflächenmaße (1)
- Oberflächenspannung (1)
- Optimal Control (1)
- Optimale Kontrolle (1)
- Optimale Portfolios (1)
- Optimierung (1)
- Optimization Algorithms (1)
- Option (1)
- Option Valuation (1)
- Optionsbewertung (1)
- Order (1)
- Ovoid (1)
- Gedruckte Kopie bestellen (1)
- Papiermaschine (1)
- Parallel Algorithms (1)
- Paralleler Algorithmus (1)
- Partikel Methoden (1)
- Patchworking Methode (1)
- Patchworking method (1)
- Pathwise Optimality (1)
- Pedestrian FLow (1)
- Pfadintegral (1)
- Planares Polynom (1)
- Poisson noise (1)
- Poisson-Gleichung (1)
- PolyBoRi (1)
- Population Balance Equation (1)
- Portfolio Optimierung (1)
- Portfoliooptimierung (1)
- Preimage of an ideal under a morphism of algebras (1)
- Projektionsoperator (1)
- Projektive Fläche (1)
- Prox-Regularisierung (1)
- Punktprozess (1)
- QMC (1)
- QVIs (1)
- Quadratischer Raum (1)
- Quantile autoregression (1)
- Quasi-Variational Inequalities (1)
- RKHS (1)
- Radial Basis Functions (1)
- Radiotherapy (1)
- Randwertproblem (1)
- Randwertproblem / Schiefe Ableitung (1)
- Rank test (1)
- Rarefied gas (1)
- Reflexionsspektroskopie (1)
- Regime Shifts (1)
- Regime-Shift Modell (1)
- Regressionsanalyse (1)
- Regularisierung / Stoppkriterium (1)
- Regularization / Stop criterion (1)
- Regularization methods (1)
- Reliability (1)
- Restricted Regions (1)
- Riemannian manifolds (1)
- Riemannsche Mannigfaltigkeiten (1)
- Rigid Body Motion (1)
- Risikomanagement (1)
- Risikomaße (1)
- Risikotheorie (1)
- Risk Measures (1)
- Robust smoothing (1)
- Rohstoffhandel (1)
- Rohstoffindex (1)
- Räumliche Statistik (1)
- SWARM (1)
- Scale function (1)
- Schaum (1)
- Schaumzerfall (1)
- Schiefe Ableitung (1)
- Schwache Formulierung (1)
- Schwache Konvergenz (1)
- Schwache Lösu (1)
- Second Order Conditions (1)
- Semi-Markov-Kette (1)
- Sequenzieller Algorithmus (1)
- Serre functor (1)
- Shallow Water Equations (1)
- Shape optimization, gradient based optimization, adjoint method (1)
- Singular <Programm> (1)
- Singularity theory (1)
- Singularität (1)
- Singularitätentheorie (1)
- Slender body theory (1)
- Sobolev spaces (1)
- Sobolev-Raum (1)
- Spannungs-Dehn (1)
- Spatial Statistics (1)
- Spectral theory (1)
- Spektralanalyse <Stochastik> (1)
- Spherical Fast Wavelet Transform (1)
- Spherical Location Problem (1)
- Sphärische Approximation (1)
- Spline-Approximation (1)
- Split Operator (1)
- Splitoperator (1)
- Sprung-Diffusions-Prozesse (1)
- Stabile Vektorbundle (1)
- Stable vector bundles (1)
- Standard basis (1)
- Standortprobleme (1)
- Steuer (1)
- Stochastic Impulse Control (1)
- Stochastic Processes (1)
- Stochastische Inhomogenitäten (1)
- Stochastische Processe (1)
- Stochastische Zinsen (1)
- Stochastische optimale Kontrolle (1)
- Stochastischer Prozess (1)
- Stokes-Gleichung (1)
- Stop- und Spieloperator (1)
- Stoßdämpfer (1)
- Strahlentherapie (1)
- Strahlungstransport (1)
- Strukturiertes Finanzprodukt (1)
- Strukturoptimierung (1)
- Strömungsdynamik (1)
- Strömungsmechanik (1)
- Success Run (1)
- Survival Analysis (1)
- Systemidentifikation (1)
- Sägezahneffekt (1)
- Tail Dependence Koeffizient (1)
- Test for Changepoint (1)
- Thermophoresis (1)
- Thin film approximation (1)
- Tichonov-Regularisierung (1)
- Time Series (1)
- Time-Series (1)
- Time-delay-Netz (1)
- Topologieoptimierung (1)
- Topology optimization (1)
- Traffic flow (1)
- Transaction costs (1)
- Trennschärfe <Statistik> (1)
- Tropical Grassmannian (1)
- Tropical Intersection Theory (1)
- Tube Drawing (1)
- Two-phase flow (1)
- Unreinheitsfunktion (1)
- Untermannigfaltigkeit (1)
- Upwind-Verfahren (1)
- Utility (1)
- Value at Risk (1)
- Value-at-Risk (1)
- Variationsrechnung (1)
- Vectorfield approximation (1)
- Vektorfeldapproximation (1)
- Vektorkugelfunktionen (1)
- Verschwindungsatz (1)
- Viskoelastische Flüssigkeiten (1)
- Viskose Transportschemata (1)
- Volatilität (1)
- Volatilitätsarbitrage (1)
- Vorkonditionierer (1)
- Vorwärts-Rückwärts-Stochastische-Differentialgleichung (1)
- Wave Based Method (1)
- Wavelet-Theorie (1)
- Wavelet-Theory (1)
- Weißes Rauschen (1)
- White Noise (1)
- Wirbelabtrennung (1)
- Wirbelströmung (1)
- Worst-Case (1)
- Wärmeleitfähigkeit (1)
- Yaglom limits (1)
- Zeitintegrale Modelle (1)
- Zeitreihe (1)
- Zentrenprobleme (1)
- Zero-dimensional schemes (1)
- Zopfgruppe (1)
- Zufälliges Feld (1)
- Zweiphasenströmung (1)
- abgeleitete Kategorie (1)
- algebraic attack (1)
- algebraic correspondence (1)
- algebraic function fields (1)
- algebraic geometry (1)
- algebraic number fields (1)
- algebraic topology (1)
- algebraische Korrespondenzen (1)
- algebraische Topologie (1)
- algebroid curve (1)
- alternating minimization (1)
- alternating optimization (1)
- analoge Mikroelektronik (1)
- angewandte Mathematik (1)
- angewandte Topologie (1)
- anisotropen Viskositätsmodell (1)
- anisotropic viscosity (1)
- applied mathematics (1)
- archimedean copula (1)
- asian option (1)
- basket option (1)
- benders decomposition (1)
- bending strip method (1)
- binomial tree (1)
- blackout period (1)
- bocses (1)
- boundary value problem (1)
- canonical ideal (1)
- canonical module (1)
- changing market coefficients (1)
- closure approximation (1)
- combinatorics (1)
- composites (1)
- computational finance (1)
- computer algebra (1)
- computeralgebra (1)
- convergence behaviour (1)
- convex constraints (1)
- convex optimization (1)
- correlated errors (1)
- coupling methods (1)
- crash (1)
- crash hedging (1)
- credit risk (1)
- curvature (1)
- decision support (1)
- decision support systems (1)
- decoding (1)
- default time (1)
- degenerations of an elliptic curve (1)
- dense univariate rational interpolation (1)
- derived category (1)
- diffusion models (1)
- discrepancy (1)
- double exponential distribution (1)
- downward continuation (1)
- efficiency loss (1)
- elastoplasticity (1)
- elliptical distribution (1)
- endomorphism ring (1)
- enumerative geometry (1)
- equilibrium strategies (1)
- equisingular families (1)
- face value (1)
- fiber reinforced silicon carbide (1)
- filtration (1)
- financial mathematics (1)
- finite difference schemes (1)
- finite element method (1)
- first hitting time (1)
- float glass (1)
- flood risk (1)
- fluid structure (1)
- fluid structure interaction (1)
- forward-shooting grid (1)
- free surface (1)
- freie Oberfläche (1)
- gebietszerlegung (1)
- gitter (1)
- good semigroup (1)
- graph p-Laplacian (1)
- gravitation (1)
- group action (1)
- großer Investor (1)
- hedging (1)
- heuristic (1)
- hierarchical matrix (1)
- hyperbolic systems (1)
- hyperelliptic function field (1)
- hyperelliptische Funktionenkörper (1)
- hyperspectal unmixing (1)
- idealclass group (1)
- image analysis (1)
- image denoising (1)
- impulse control (1)
- impurity functions (1)
- incompressible elasticity (1)
- infinite-dimensional manifold (1)
- inflation-linked product (1)
- integer programming (1)
- integral constitutive equations (1)
- intensity (1)
- inverse optimization (1)
- inverse problem (1)
- jump-diffusion process (1)
- large investor (1)
- large scale integer programming (1)
- lattice Boltzmann (1)
- level K-algebras (1)
- level set method (1)
- limit theorems (1)
- linear code (1)
- localizing basis (1)
- longevity bonds (1)
- low-rank approximation (1)
- macro derivative (1)
- market manipulation (1)
- markov model (1)
- martingale optimality principle (1)
- mathematical modelling (1)
- mathematical morphology (1)
- matrix problems (1)
- matroid flows (1)
- mean-variance approach (1)
- micromechanics (1)
- mixed convection (1)
- mixed methods (1)
- mixed multiscale finite element methods (1)
- modal derivatives (1)
- model order reduction (1)
- moduli space (1)
- monotone Konvergenz (1)
- monotropic programming (1)
- multi scale (1)
- multi-asset option (1)
- multi-class image segmentation (1)
- multi-level Monte Carlo (1)
- multi-phase flow (1)
- multicategory (1)
- multifilament superconductor (1)
- multigrid method (1)
- multileaf collimator (1)
- multiobjective optimization (1)
- multipatch (1)
- multiplicative noise (1)
- multiscale denoising (1)
- multiscale methods (1)
- multivariate chi-square-test (1)
- network flows (1)
- network synthesis (1)
- netzgenerierung (1)
- nicht-newtonsche Strömungen (1)
- nichtlineare Druckkorrektor (1)
- nichtlineare Modellreduktion (1)
- nichtlineare Netzwerke (1)
- non-desarguesian plane (1)
- non-newtonian flow (1)
- nonconvex optimization (1)
- nonlinear circuits (1)
- nonlinear diffusion filtering (1)
- nonlinear model reduction (1)
- nonlinear pressure correction (1)
- nonlinear term structure dependence (1)
- nonlinear vibration analysis (1)
- nonlocal filtering (1)
- nonnegative matrix factorization (1)
- nonwovens (1)
- normalization (1)
- numerical irreducible decomposition (1)
- numerical methods (1)
- numerische Strömungssimulation (1)
- numerisches Verfahren (1)
- oblique derivative (1)
- optimal capital structure (1)
- optimal consumption and investment (1)
- optiman stopping (1)
- option pricing (1)
- option valuation (1)
- partial differential equation (1)
- partial information (1)
- path-dependent options (1)
- pattern (1)
- penalty methods (1)
- penalty-free formulation (1)
- petroleum exploration (1)
- planar polynomial (1)
- poroelasticity (1)
- porous media (1)
- portfolio (1)
- portfolio decision (1)
- portfolio-optimization (1)
- poröse Medien (1)
- potential (1)
- preconditioners (1)
- pressure correction (1)
- primal-dual algorithm (1)
- probability distribution (1)
- projective surfaces (1)
- proximation (1)
- quadrinomial tree (1)
- quasi-Monte Carlo (1)
- quasi-variational inequalities (1)
- quasihomogeneity (1)
- quasiregular group (1)
- quasireguläre Gruppe (1)
- radiation therapy (1)
- radiotherapy (1)
- rare disasters (1)
- rate of convergence (1)
- raum-zeitliche Analyse (1)
- real quadratic number fields (1)
- redundant constraint (1)
- reflectionless boundary condition (1)
- reflexionslose Randbedingung (1)
- regime-shift model (1)
- regression analysis (1)
- regularization methods (1)
- rheology (1)
- sampling (1)
- sawtooth effect (1)
- scalar and vectorial wavelets (1)
- second class group (1)
- seismic tomography (1)
- semigroup of values (1)
- sheaf theory (1)
- similarity measures (1)
- singularities (1)
- sparse interpolation of multivariate rational functions (1)
- sparse multivariate polynomial interpolation (1)
- sparsity (1)
- spherical approximation (1)
- sputtering process (1)
- stochastic arbitrage (1)
- stochastic coefficient (1)
- stochastic optimal control (1)
- stochastic processes (1)
- stochastische Arbitrage (1)
- stop- and play-operator (1)
- subgradient (1)
- superposed fluids (1)
- surface measures (1)
- surrogate algorithm (1)
- syzygies (1)
- tail dependence coefficient (1)
- tax (1)
- tensions (1)
- time delays (1)
- topological asymptotic expansion (1)
- toric geometry (1)
- torische Geometrie (1)
- total variation (1)
- total variation spatial regularization (1)
- translation invariant spaces (1)
- translinear circuits (1)
- translineare Schaltungen (1)
- transmission conditions (1)
- tropical geometry (1)
- unbeschränktes Potential (1)
- unbounded potential (1)
- value semigroup (1)
- variational methods (1)
- variational model (1)
- vector bundles (1)
- vector spherical harmonics (1)
- vectorial wavelets (1)
- vertical velocity (1)
- vertikale Geschwindigkeiten (1)
- viscoelastic fluids (1)
- volatility arbitrage (1)
- vortex seperation (1)
- well-posedness (1)
- worst-case (1)
- worst-case scenario (1)
- Äquisingularität (1)
- Überflutung (1)
- Überflutungsrisiko (1)
- Übergangsbedingungen (1)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (226)
- Fraunhofer (ITWM) (2)

Structure and Construction of Instanton Bundles on P3

The study of families of curves with prescribed singularities has a long tradition. Its foundations were laid by Plücker, Severi, Segre, and Zariski at the beginning of the 20th century. Leading to interesting results with applications in singularity theory and in the topology of complex algebraic curves and surfaces it has attained the continuous attraction of algebraic geometers since then. Throughout this thesis we examine the varieties V(D,S1,...,Sr) of irreducible reduced curves in a fixed linear system |D| on a smooth projective surface S over the complex numbers having precisely r singular points of types S1,...,Sr. We are mainly interested in the following three questions: 1) Is V(D,S1,...,Sr) non-empty? 2) Is V(D,S1,...,Sr) T-smooth, that is smooth of the expected dimension? 3) Is V(D,S1,...Sr) irreducible? We would like to answer the questions in such a way that we present numerical conditions depending on invariants of the divisor D and of the singularity types S1,...,Sr, which ensure a positive answer. The main conditions which we derive will be of the type inv(S1)+...+inv(Sr) < aD^2+bD.K+c, where inv is some invariant of singularity types, a, b and c are some constants, and K is some fixed divisor. The case that S is the projective plane has been very well studied by many authors, and on other surfaces some results for curves with nodes and cusps have been derived in the past. We, however, consider arbitrary singularity types, and the results which we derive apply to large classes of surfaces, including surfaces in projective three-space, K3-surfaces, products of curves and geometrically ruled surfaces.

Abstract
The main theme of this thesis is about Graph Coloring Applications and Defining Sets in Graph Theory.
As in the case of block designs, finding defining sets seems to be difficult problem, and there is not a general conclusion. Hence we confine us here to some special types of graphs like bipartite graphs, complete graphs, etc.
In this work, four new concepts of defining sets are introduced:
• Defining sets for perfect (maximum) matchings
• Defining sets for independent sets
• Defining sets for edge colorings
• Defining set for maximal (maximum) clique
Furthermore, some algorithms to find and construct the defining sets are introduced. A review on some known kinds of defining sets in graph theory is also incorporated, in chapter 2 the basic definitions and some relevant notations used in this work are introduced.
chapter 3 discusses the maximum and perfect matchings and a new concept for a defining set for perfect matching.
Different kinds of graph colorings and their applications are the subject of chapter 4.
Chapter 5 deals with defining sets in graph coloring. New results are discussed along with already existing research results, an algorithm is introduced, which enables to determine a defining set of a graph coloring.
In chapter 6, cliques are discussed. An algorithm for the determination of cliques using their defining sets. Several examples are included.

Matrix Compression Methods for the Numerical Solution of Radiative Transfer in Scattering Media
(2002)

Radiative transfer in scattering media is usually described by the radiative transfer equation, an integro-differential equation which describes the propagation of the radiative intensity along a ray. The high dimensionality of the equation leads to a very large number of unknowns when discretizing the equation. This is the major difficulty in its numerical solution. In case of isotropic scattering and diffuse boundaries, the radiative transfer equation can be reformulated into a system of integral equations of the second kind, where the position is the only independent variable. By employing the so-called momentum equation, we derive an integral equation, which is also valid in case of linear anisotropic scattering. This equation is very similar to the equation for the isotropic case: no additional unknowns are introduced and the integral operators involved have very similar mapping properties. The discretization of an integral operator leads to a full matrix. Therefore, due to the large dimension of the matrix in practical applcation, it is not feasible to assemble and store the entire matrix. The so-called matrix compression methods circumvent the assembly of the matrix. Instead, the matrix-vector multiplications needed by iterative solvers are performed only approximately, thus, reducing, the computational complexity tremendously. The kernels of the integral equation describing the radiative transfer are very similar to the kernels of the integral equations occuring in the boundary element method. Therefore, with only slight modifications, the matrix compression methods, developed for the latter are readily applicable to the former. As apposed to the boundary element method, the integral kernels for radiative transfer in absorbing and scattering media involve an exponential decay term. We examine how this decay influences the efficiency of the matrix compression methods. Further, a comparison with the discrete ordinate method shows that discretizing the integral equation may lead to reductions in CPU time and to an improved accuracy especially in case of small absorption and scattering coefficients or if local sources are present.

In this work we present and estimate an explanatory model with a predefined system of explanatory equations, a so called lag dependent model. We present a locally optimal, on blocked neural network based lag estimator and theorems about consistensy. We define the change points in context of lag dependent model, and present a powerfull algorithm for change point detection in high dimensional high dynamical systems. We present a special kind of bootstrap for approximating the distribution of statistics of interest in dependent processes.

Different aspects of geomagnetic field modelling from satellite data are examined in the framework of modern multiscale approximation. The thesis is mostly concerned with wavelet techniques, i.e. multiscale methods based on certain classes of kernel functions which are able to realize a multiscale analysis of the funtion (data) space under consideration. It is thus possible to break up complicated functions like the geomagnetic field, electric current densities or geopotentials into different pieces and study these pieces separately. Based on a general approach to scalar and vectorial multiscale methods, topics include multiscale denoising, crustal field approximation and downward continuation, wavelet-parametrizations of the magnetic field in Mie-representation as well as multiscale-methods for the analysis of time-dependent spherical vector fields. For each subject the necessary theoretical framework is established and numerical applications examine and illustrate the practical aspects.

One crucial assumption of continuous financial mathematics is that the portfolio can be rebalanced continuously and that there are no transaction costs. In reality, this of course does not work. On the one hand, continuous rebalancing is impossible, on the other hand, each transaction causes costs which have to be subtracted from the wealth. Therefore, we focus on trading strategies which are based on discrete rebalancing - in random or equidistant times - and where transaction costs are considered. These strategies are considered for various utility functions and are compared with the optimal ones of continuous trading.

The immiscible lattice BGK method for solving the two-phase incompressible Navier-Stokes equations is analysed in great detail. Equivalent moment analysis and local differential geometry are applied to examine how interface motion is determined and how surface tension effects can be included such that consistency to the two-phase incompressible Navier-Stokes equations can be expected. The results obtained from theoretical analysis are verified by numerical experiments. Since the intrinsic interface tracking scheme of immiscible lattice BGK is found to produce unsatisfactory results in two-dimensional simulations several approaches to improving it are discussed but all of them turn out to yield no substantial improvement. Furthermore, the intrinsic interface tracking scheme of immiscible lattice BGK is found to be closely connected to the well-known conservative volume tracking method. This result suggests to couple the conservative volume tracking method for determining interface motion with the Navier-Stokes solver of immiscible lattice BGK. Applied to simple flow fields, this coupled method yields much better results than plain immiscible lattice BGK.

The dissertation is concerned with the numerical solution of Fokker-Planck equations in high dimensions arising in the study of dynamics of polymeric liquids. Traditional methods based on tensor product structure are not applicable in high dimensions for the number of nodes required to yield a fixed accuracy increases exponentially with the dimension; a phenomenon often referred to as the curse of dimension. Particle methods or finite point set methods are known to break the curse of dimension. The Monte Carlo method (MCM) applied to such problems are 1/sqrt(N) accurate, where N is the cardinality of the point set considered, independent of the dimension. Deterministic version of the Monte Carlo method called the quasi Monte Carlo method (QMC) are quite effective in integration problems and accuracy of the order of 1/N can be achieved, up to a logarithmic factor. However, such a replacement cannot be carried over to particle simulations due to the correlation among the quasi-random points. The method proposed by Lecot (C.Lecot and F.E.Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity, 15 (1999), pp.342-359) is the only known QMC approach, but it not only leads to large particle numbers but also the proven order of convergence is 1/N^(2s) in dimension s. We modify the method presented there, in such a way that the new method works with reasonable particle numbers even in high dimensions and has better order of convergence. Though the provable order of convergence is 1/sqrt(N), the results show less variance and thus the proposed method still slightly outperforms standard MCM.

In the present work, we investigated how to correct the questionable normality, linear and quadratic assumptions underlying existing Value-at-Risk methodologies. In order to take also into account the skewness, the heavy tailedness and the stochastic feature of the volatility of the market values of financial instruments, the constant volatility hypothesis widely used by existing Value-at-Risk appproches has also been investigated and corrected and the tails of the financial returns distributions have been handled via Generalized Pareto or Extreme Value Distributions. Artificial Neural Networks have been combined by Extreme Value Theory in order to build consistent and nonparametric Value-at-Risk measures without the need to make any of the questionable assumption specified above. For that, either autoregressive models (AR-GARCH) have been used or the direct characterization of conditional quantiles due to Bassett, Koenker [1978] and Smith [1987]. In order to build consistent and nonparametric Value-at-Risk estimates, we have proved some new results extending White Artificial Neural Network denseness results to unbounded random variables and provide a generalisation of the Bernstein inequality, which is needed to establish the consistency of our new Value-at-Risk estimates. For an accurate estimation of the quantile of the unexpected returns, Generalized Pareto and Extreme Value Distributions have been used. The new Artificial Neural Networks denseness results enable to build consistent, asymptotically normal and nonparametric estimates of conditional means and stochastic volatilities. The denseness results uses the Sobolev metric space L^m (my) for some m >= 1 and some probability measure my and which holds for a certain subclass of square integrable functions. The Fourier transform, the new extension of the Bernstein inequality for unbounded random variables from stationary alpha-mixing processes combined with the new generalization of a result of White and Wooldrige [1990] have been the main tool to establich the extension of White's neural network denseness results. To illustrate the goodness and level of accuracy of the new denseness results, we were able to demonstrate the applicability of the new Value-at-Risk approaches by means of three examples with real financial data mainly from the banking sector traded on the Frankfort Stock Exchange.

This thesis builds a bridge between singularity theory and computer algebra. To an isolated hypersurface singularity one can associate a regular meromorphic connection, the Gauß-Manin connection, containing a lattice, the Brieskorn lattice. The leading terms of the Brieskorn lattice with respect to the weight and V-filtration of the Gauß-Manin connection define the spectral pairs. They correspond to the Hodge numbers of the mixed Hodge structure on the cohomology of the Milnor fibre and belong to the finest known invariants of isolated hypersurface singularities. The differential structure of the Brieskorn lattice can be described by two complex endomorphisms A0 and A1 containing even more information than the spectral pairs. In this thesis, an algorithmic approach to the Brieskorn lattice in the Gauß-Manin connection is presented. It leads to algorithms to compute the complex monodromy, the spectral pairs, and the differential structure of the Brieskorn lattice. These algorithms are implemented in the computer algebra system Singular.

Diese Arbeit gehört in die algebraische Geometrie und die Darstellungstheorie und stellt eine Beziehung zwischen beiden Gebieten dar. Man beschäftigt sich mit den abgeleiteten Kategorien auf flachen Entartungen projektiver Geraden und elliptischer Kurven. Als Mittel benutzt man die Technik der Matrixprobleme. Das Hauptergebnis dieser Dissertation ist der folgende Satz: SATZ. Sei X ein Zykel projektiver Geraden. Dann gibt es drei Typen unzerlegbarer Objekte in D^-(Coh_X): - Shifts von Wolkenkratzergarben in einem regulären Punkt; - Bänder B(w,m,lambda), - Saiten S(w). Ganz analog beweist man die Zahmheit der abgeleiteten Kategorien vieler assoziativer Algebren.

The central theme in this thesis concerns the development of enhanced methods and algorithms for appraising market and credit risks and their application within the context of standard and more advanced market models. Generally, methods and algorithms for analysing market risk of complex portfolios involve detailed knowledge of option sensitivities, the so-called "Greeks". Based on an analysis of symmetries in financial market models, relations between option sensitivities are obtained, which can be used for the efficient valuation of the Greeks. Mainly, the relations are derived within the Black Scholes model, however, some relations are also valid for more general models, for instance the Heston model. Portfolios are usually influenced by lots of underlyings, so it is necessary to characterise the dependencies of these basic instruments. It is usual to describe such dependencies by correlation matrices. However, estimations of correlation matrices in practice are disturbed by statistical noise and usually have the problem of rank deficiency due to missing data. A fast algorithm is presented which performs a generalized Cholesky decomposition of a perturbed correlation matrix. In contrast to the standard Cholesky algorithm, an advantage of the generalized method is that it works for semi-positive, rank deficient matrices as well. Moreover, it gives an approximative decomposition when the input matrix is indefinite. A comparison with known algorithms with similar features is performed and it turns out, that the new algorithm can be recommended in situations where computation time is the critical issue. The determination of a profit and loss distribution by Fourier inversion of its characteristic function is a powerful tool, but it can break down when the characteristic function is not integrable. In this thesis, methods for Fourier inversion of non-integrable characteristic functions are studied. In this respect, two theorems are obtained which are based on a suitable approximation of the unknown distribution with known density and characteristic function. Further it will be shown, that straightforward Fast Fourier inversion works, when the according density lives on a bounded interval. The above techniques are of crucial importance to determine the profit and loss distribution (P&L) of large portfolios efficiently. The so-called Delta Gamma normal approach has become industrial standard for the estimation of market risk. It is shown, that the performance of the Delta Gamma normal approach can be improved substantially by application of the developed methods. The same optimization procedure also applies to the Delta Gamma Student model. A standard tool for computing the P&L distribution of a loan portfolio is the CreditRisk+ model. Basically, the CreditRisk+ distribution is a discrete distribution which can be computed from its probability generating function. For this a numerically stable method is presented and as an alternative, a new algorithm based on Fourier inversion is proposed. Finally, an extension of the CreditRisk+ model to market risk is developed, which distribution can be obtained efficiently by the presented Fourier inversion methods as well.

The thesis deals with the subgradient optimization methods which are serving to solve nonsmooth optimization problems. We are particularly concerned with solving large-scale integer programming problems using the methodology of Lagrangian relaxation and dualization. The goal is to employ the subgradient optimization techniques to solve large-scale optimization problems that originated from radiation therapy planning problem. In the thesis, different kinds of zigzagging phenomena which hamper the speed of the subgradient procedures have been investigated and identified. Moreover, we have established a new procedure which can completely eliminate the zigzagging phenomena of subgradient methods. Procedures used to construct both primal and dual solutions within the subgradient schemes have been also described. We applied the subgradient optimization methods to solve the problem of minimizing total treatment time of radiation therapy. The problem is NP-hard and thus far there exists no method for solving the problem to optimality. We present a new, efficient, and fast algorithm which combines exact and heuristic procedures to solve the problem.

The thesis is concerned with the modelling of ionospheric current systems and induced magnetic fields in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered operator equation. First of all a general multiscale concept for vectorial operator equations between two separable Hilbert spaces is developed in terms of vector kernel functions. The equivalence to the canonical tensorial ansatz is proven and the theory is transferred to the case of multiscale regularization of vectorial inverse problems. As a first application, a special multiresolution analysis of the space of square-integrable vector fields on the sphere, e.g. the Earth’s magnetic field measured on a spherical satellite’s orbit, is presented. By this, a multiscale separation of spherical vector-valued functions with respect to their sources can be established. The vector field is split up into a part induced by sources inside the sphere, a part which is due to sources outside the sphere and a part which is generated by sources on the sphere, i.e. currents crossing the sphere. The multiscale technqiue is tested on a magnetic field data set of the satellite CHAMP and it is shown that crustal field determination can be improved by previously applying our method. In order to reconstruct ionspheric current systems from magnetic field data, an inversion of the Biot-Savart’s law in terms of multiscale regularization is defined. The corresponding operator is formulated and the singular values are calculated. Based on the konwledge of the singular system a regularzation technique in terms of certain product kernels and correponding convolutions can be formed. The method is tested on different simulations and on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

We construct and study two surface measures on the space C([0,1],M) of paths in a compact Riemannian manifold M embedded into the Euclidean space R^n. The first one is induced by conditioning the usual Wiener measure on C([0,T],R^n) to the event that the Brownian particle does not leave the tubular epsilon-neighborhood of M up to time T, and passing to the limit. The second one is defined as the limit of the laws of reflected Brownian motions with reflection on the boundaries of the tubular epsilon-neighborhoods of M. We prove that the both surface measures exist and compare them with the Wiener measure W_M on C([0,T],M). We show that the first one is equivalent to W_M and compute the corresponding density explicitly in terms of the scalar curvature and the mean curvature vector of M. Further, we show that the second surface measure coincides with W_M. Finally, we study the limit behavior of the both surface measures as T tends to infinity.

In this thesis the combinatorial framework of toric geometry is extended to equivariant sheaves over toric varieties. The central questions are how to extract combinatorial information from the so developed description and whether equivariant sheaves can, like toric varieties, be considered as purely combinatorial objects. The thesis consists of three main parts. In the first part, by systematically extending the framework of toric geometry, a formalism is developed for describing equivariant sheaves by certain configurations of vector spaces. In the second part, homological properties of a certain class of equivariant sheaves are investigated, namely that of reflexive equivariant sheaves. Several kinds of resolutions for these sheaves are constructed which depend only on the configuration of their associated vector spaces. Thus a partially positive answer to the question of combinatorial representability is given. As a particular result, a new way for computing minimal resolutions for Z^n - graded modules over polynomial rings is obtained. In the third part a complete classification of the simplest nontrivial sheaves, equivariant vector bundles of rank two over smooth toric surfaces, is given. A combinatorial characterization is given and parameter spaces (moduli spaces) are constructed which depend only on this characterization. In appendices a outlook on equivariant sheaves and the relation of Chern classes to their combinatorial classification is given, particularly focussing on the case of the projective plane. A classification of equivariant vector bundles of rank three over the projective plane is given.

Semiparametric estimation of conditional quantiles for time series, with applications in finance
(2003)

The estimation of conditional quantiles has become an increasingly important issue in insurance and financial risk management. The stylized facts of financial time series data has rendered direct applications of extreme value theory methodologies, in the estimation of extreme conditional quantiles, inappropriate. On the other hand, quantile regression based procedures work well in nonextreme parts of a given data but breaks down in extreme probability levels. In order to solve this problem, we combine nonparametric regressions for time series and extreme value theory approaches in the estimation of extreme conditional quantiles for financial time series. To do so, a class of time series models that is similar to nonparametric AR-(G)ARCH models but which does not depend on distributional and moments assumptions, is introduced. We discuss estimation procedures for the nonextreme levels using the models and consider the estimates obtained by inverting conditional distribution estimators and by direct estimation using Koenker-Basset (1978) version for kernels. Under some regularity conditions, the asymptotic normality and uniform convergence, with rates, of the conditional quantile estimator for strong mixing time series, are established. We study the estimation of scale function in the introduced models using similar procedures and show that under some regularity conditions, the scale estimate is weakly consistent and asymptotically normal. The application of introduced models in the estimation of extreme conditional quantiles is achieved by augmenting them with methods in extreme value theory. It is shown that the overal extreme conditional quantiles estimator is consistent. A Monte Carlo study is carried out to illustrate the good performance of the estimates and real data are used to demonstrate the estimation of Value-at-Risk and conditional expected shortfall in financial risk management and their multiperiod predictions discussed.

Extensions of Shallow Water Equations The subject of the thesis of Michael Hilden is the simulation of floods in urban areas. In case of strong rain events, water can flow out of the overloaded sewer system onto the street and damage the connected houses. The dependable simulation of water flow out of a manhole ("manhole") and over a curb ("curb") is crucial for the assessment of the flood risks. The incompressible 3D-Navier-Stokes Equations (3D-NSE) describe the free surface flow of water accurately, but require expensive computations. Therefore, the less CPU-intensive (factor ca.1/100) Shallow Water Equations (SWE) are usually applied in hydrology. They can be derived from 3D-NSE under the assumption of a hydrostatic pressure distribution via depth-integration and are applied successfully in particular to simulations of river flow processes. The SWE-computations of the flow problems "manhole" and "curb" differ to the 3D-NSE results. Thus, SWE need to be extended appropriately to give reliable forecasts for flood risks in urban areas within reduced computational efforts. These extensions are developed based on physical considerations not considered in the classical SWE. In one extension, a vortex layer on the ground is separated from the main flow representing its new bottom. In a further extension, the hydrostatic pressure distribution is corrected by additional terms due to approximations of vertical velocities and their interaction with the flow. These extensions increase the quality of the SWE results for these flow problems up to the quality level of the NSE results within a moderate increase of the CPU efforts.

The thesis discusses discrete-time dynamic flows over a finite time horizon T. These flows take time, called travel time, to pass an arc of the network. Travel times, as well as other network attributes, such as, costs, arc and node capacities, and supply at the source node, can be constant or time-dependent. Here we review results on discrete-time dynamic flow problems (DTDNFP) with constant attributes and develop new algorithms to solve several DTDNFPs with time-dependent attributes. Several dynamic network flow problems are discussed: maximum dynamic flow, earliest arrival flow, and quickest flow problems. We generalize the hybrid capacity scaling and shortest augmenting path algorithmic of the static network flow problem to consider the time dependency of the network attributes. The result is used to solve the maximum dynamic flow problem with time-dependent travel times and capacities. We also develop a new algorithm to solve earliest arrival flow problems with the same assumptions on the network attributes. The possibility to wait (or park) at a node before departing on outgoing arc is also taken into account. We prove that the complexity of new algorithm is reduced when infinite waiting is considered. We also report the computational analysis of this algorithm. The results are then used to solve quickest flow problems. Additionally, we discuss time-dependent bicriteria shortest path problems. Here we generalize the classical shortest path problems in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a travel time on each arc. These problems have several interesting practical applications, but have not attained much attention in the literature. Here we develop two new algorithms in which one of them requires weaker assumptions as in previous research on the subject. Numerical tests show the superiority of the new algorithms. We then apply dynamic network flow models and their associated solution algorithms to determine lower bounds of the evacuation time, evacuation routes, and maximum capacities of inhabited areas with respect to safety requirements. As a macroscopic approach, our dynamic network flow models are mainly used to produce good lower bounds for the evacuation time and do not consider any individual behavior during the emergency situation. These bounds can be used to analyze existing buildings or help in the design phase of planning a building.

The main two problems of continuous-time financial mathematics are option pricing and portfolio optimization. In this thesis, various new aspects of these major topics of financial mathematics will be discussed. In all our considerations we will assume the standard diffusion type setting for securitiy prices which is today well-know under the term "Black-Scholes model". This setting and the basic results of option pricing and portfolio optimization are surveyed in the first chapter. The next three chapters deal with generalizations of the standard portfolio problem, also know as "Merton's problem". Here, we will always use the stochastic control approach as introduced in the seminal papers by Merton (1969, 1971, 1990). One such problem is the very realistic setting of an investor who is faced with fixed monetary streams. More precisely, in addition to maximizing the utility from final wealth via choosing an investment strategy, the investor also has to fulfill certain consumption needs. Also the opposite situation, an additional income stream can now be taken into account in our portfolio optimization problem. We consider various examples and solve them on one hand via classical stochastic control methods and on the other hand by our new separation theorem. This together with some numerical examples forms Chapter 2. Chapter 3 is mainly concerned with the portfolio problem if the investor has different lending and borrowing rates. We give explicit solutions (where possible) and numerical methods to calculate the optimal strategy in the cases of log utility and HARA utility for three different modelling approaches of the dependence of the borrowing rate on the fraction of wealth financed by a credit. The further generalization of the standard Merton problem in Chapter 4 consists in considering simultaneously the possibilities for continuous and discrete consumption. In our general approach there is a possibility for assigning the different consumption times different weights which is a generalization of the usual way of making them comparable via discounting. Chapter 5 deals with the special case of pricing basket options. Here, the main problem is not path-dependence but the multi-dimensionality which makes it impossible to give usuefull analytical representations of the option price. We review the literature and compare six different numerical methods in a systematic way. Thereby we also look at the influence of various parameters such as strike, correlation, forwards or volatilities on the erformance of the different numerical methods. The problem of pricing Asian options on average spot with average strike is the topic of Chapter 6. We here apply the bivariate normal distribution to obtain an approximate option price. This method proves to be very reliable and e±cient for the valuation of different variants of Asian options on average spot with average strike.

The focus of this work has been to develop two families of wavelet solvers for the inner displacement boundary-value problem of elastostatics. Our methods are particularly suitable for the deformation analysis corresponding to geoscientifically relevant (regular) boundaries like sphere, ellipsoid or the actual Earth's surface. The first method, a spatial approach to wavelets on a regular (boundary) surface, is established for the classical (inner) displacement problem. Starting from the limit and jump relations of elastostatics we formulate scaling functions and wavelets within the framework of the Cauchy-Navier equation. Based on numerical integration rules a tree algorithm is constructed for fast wavelet computation. This method can be viewed as a first attempt to "short-wavelength modelling", i.e. high resolution of the fine structure of displacement fields. The second technique aims at a suitable wavelet approximation associated to Green's integral representation for the displacement boundary-value problem of elastostatics. The starting points are tensor product kernels defined on Cauchy-Navier vector fields. We come to scaling functions and a spectral approach to wavelets for the boundary-value problems of elastostatics associated to spherical boundaries. Again a tree algorithm which uses a numerical integration rule on bandlimited functions is established to reduce the computational effort. For numerical realization for both methods, multiscale deformation analysis is investigated for the geoscientifically relevant case of a spherical boundary using test examples. Finally, the applicability of our wavelet concepts is shown by considering the deformation analysis of a particular region of the Earth, viz. Nevada, using surface displacements provided by satellite observations. This represents the first step towards practical applications.

The present thesis deals with coupled steady state laminar flows of isothermal incompressible viscous Newtonian fluids in plain and in porous media. The flow in the pure fluid region is usually described by the (Navier-)Stokes system of equations. The most popular models for the flow in the porous media are those suggested by Darcy and by Brinkman. Interface conditions, proposed in the mathematical literature for coupling Darcy and Navier-Stokes equations, are shortly reviewed in the thesis. The coupling of Navier-Stokes and Brinkman equations in the literature is based on the so called continuous stress tensor interface conditions. One of the main tasks of this thesis is to investigate another type of interface conditions, namely, the recently suggested stress tensor jump interface conditions. The mathematical models based on these interface conditions were not carefully investigated from the mathematical point of view, and also their validity was a subject of discussions. The considerations within this thesis are a step toward better understanding of these interface conditions. Several aspects of the numerical simulations of such coupled flows are considered: -the choice of proper interface conditions between the plain and porous media -analysis of the well-posedness of the arising systems of partial differential equations; -developing numerical algorithm for the stress tensor jump interface conditions, coupling Navier-Stokes equations in the pure liquid media with the Navier-Stokes-Brinkman equations in the porous media; -validation of the macroscale mathematical models on the base of a comparison with the results from a direct numerical simulation of model representative problems, allowing for grid resolution of the pore level geometry; -developing software and performing numerical simulation of 3-D industrial flows, namely of oil flows through car filters.

The question of how to model dependence structures between financial assets was revolutionized since the last decade when the copula concept was introduced in financial research. Even though the concept of splitting marginal behavior and dependence structure (described by a copula) of multidimensional distributions already goes back to Sklar (1955) and Hoeffding (1940), there were very little empirical efforts done to check out the potentials of this approach. The aim of this thesis is to figure out the possibilities of copulas for modelling, estimating and validating purposes. Therefore we extend the class of Archimedean Copulas via a transformation rule to new classes and come up with an explicit suggestion covering the Frank and Gumbel family. We introduce a copula based mapping rule leading to joint independence and as results of this mapping we present an easy method of multidimensional chi²-testing and a new estimate for high dimensional parametric distributions functions. Different ways of estimating the tail dependence coefficient, describing the asymptotic probability of joint extremes, are compared and improved. The limitations of elliptical distributions are carried out and a generalized form of them, preserving their applicability, is developed. We state a method to split a (generalized) elliptical distribution into its radial and angular part. This leads to a positive definite robust estimate of the dispersion matrix (here only given as a theoretical outlook). The impact of our findings is stated by modelling and testing the return distributions of stock- and currency portfolios furthermore of oil related commodities- and LME metal baskets. In addition we show the crash stability of real estate based firms and the existence of nonlinear dependence in between the yield curve.

Nowadays one of the major objectives in geosciences is the determination of the gravitational field of our planet, the Earth. A precise knowledge of this quantity is not just interesting on its own but it is indeed a key point for a vast number of applications. The important question is how to obtain a good model for the gravitational field on a global scale. The only applicable solution - both in costs and data coverage - is the usage of satellite data. We concentrate on highly precise measurements which will be obtained by GOCE (Gravity Field and Steady State Ocean Circulation Explorer, launch expected 2006). This satellite has a gradiometer onboard which returns the second derivatives of the gravitational potential. Mathematically seen we have to deal with several obstacles. The first one is that the noise in the different components of these second derivatives differs over several orders of magnitude, i.e. a straightforward solution of this outer boundary value problem will not work properly. Furthermore we are not interested in the data at satellite height but we want to know the field at the Earth's surface, thus we need a regularization (downward-continuation) of the data. These two problems are tackled in the thesis and are now described briefly. Split Operators: We have to solve an outer boundary value problem at the height of the satellite track. Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We present a different approach: We classify all first and purely second order operators which fulfill that a harmonic function stays harmonic under their application. This task is done by using modern algebraic methods for solving systems of partial differential equations symbolically. Now we can look at the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of the differential operator, i.e. integration. In particular we are capable to deal with derivatives which are tangential to the boundary. Auto-Regularization: The second obstacle is finding a proper regularization procedure. This is complicated by the fact that we are facing stochastic rather than deterministic noise. The main question is how to find an optimal regularization parameter which is impossible without any additional knowledge. However we could show that with a very limited number of additional information, which are obtainable also in practice, we can regularize in an asymptotically optimal way. In particular we showed that the knowledge of two input data sets allows an order optimal regularization procedure even under the hard conditions of Gaussian white noise and an exponentially ill-posed problem. A last but rather simple task is combining data from different derivatives which can be done by a weighted least squares approach using the information we obtained out of the regularization procedure. A practical application to the downward-continuation problem for simulated gravitational data is shown.

In traditional portfolio optimization under the threat of a crash the investment horizon or time to maturity is neglected. Developing the so-called crash hedging strategies (which are portfolio strategies which make an investor indifferent to the occurrence of an uncertain (down) jumps of the price of the risky asset) the time to maturity turns out to be essential. The crash hedging strategies are derived as solutions of non-linear differential equations which itself are consequences of an equilibrium strategy. Hereby the situation of changing market coefficients after a possible crash is considered for the case of logarithmic utility as well as for the case of general utility functions. A benefit-cost analysis of the crash hedging strategy is done as well as a comparison of the crash hedging strategy with the optimal portfolio strategies given in traditional crash models. Moreover, it will be shown that the crash hedging strategies optimize the worst-case bound for the expected utility from final wealth subject to some restrictions. Another application is to model crash hedging strategies in situations where both the number and the height of the crash are uncertain but bounded. Taking the additional information of the probability of a possible crash happening into account leads to the development of the q-quantile crash hedging strategy.

In the filling process of a car tank, the formation of foam plays an unwanted role, as it may prevent the tank from being completely filled or at least delay the filling. Therefore it is of interest to optimize the geometry of the tank using numerical simulation in such a way that the influence of the foam is minimized. In this dissertation, we analyze the behaviour of the foam mathematically on the mezoscopic scale, that is for single lamellae. The most important goals are on the one hand to gain a deeper understanding of the interaction of the relevant physical effects, on the other hand to obtain a model for the simulation of the decay of a lamella which can be integrated in a global foam model. In the first part of this work, we give a short introduction into the physical properties of foam and find that the Marangoni effect is the main cause for its stability. We then develop a mathematical model for the simulation of the dynamical behaviour of a lamella based on an asymptotic analysis using the special geometry of the lamella. The result is a system of nonlinear partial differential equations (PDE) of third order in two spatial and one time dimension. In the second part, we analyze this system mathematically and prove an existence and uniqueness result for a simplified case. For some special parameter domains the system can be further simplified, and in some cases explicit solutions can be derived. In the last part of the dissertation, we solve the system using a finite element approach and discuss the results in detail.

In this text we survey some large deviation results for diffusion processes. The first chapters present results from the literature such as the Freidlin-Wentzell theorem for diffusions with small noise. We use these results to prove a new large deviation theorem about diffusion processes with strong drift. This is the main result of the thesis. In the later chapters we give another application of large deviation results, namely to determine the exponential decay rate for the Bayes risk when separating two different processes. The final chapter presents techniques which help to experiment with rare events for diffusion processes by means of computer simulations.

In this dissertation we consider complex, projective hypersurfaces with many isolated singularities. The leading questions concern the maximal number of prescribed singularities of such hypersurfaces in a given linear system, and geometric properties of the equisingular stratum. In the first part a systematic introduction to the theory of equianalytic families of hypersurfaces is given. Furthermore, the patchworking method for constructing hypersurfaces with singularities of prescribed types is described. In the second part we present new existence results for hypersurfaces with many singularities. Using the patchworking method, we show asymptotically proper results for hypersurfaces in P^n with singularities of corank less than two. In the case of simple singularities, the results are even asymptotically optimal. These statements improve all previous general existence results for hypersurfaces with these singularities. Moreover, the results are also transferred to hypersurfaces defined over the real numbers. The last part of the dissertation deals with the Castelnuovo function for studying the cohomology of ideal sheaves of zero-dimensional schemes. Parts of the theory of this function for schemes in P^2 are generalized to the case of schemes on general surfaces in P^3. As an application we show an H^1-vanishing theorem for such schemes.

In this thesis we show that the theory of algebraic correspondences introduced by Deuring in the 1930s can be applied to construct non-trivial homomorphisms between the Jacobi groups of hyperelliptic function fields. Concretely, we deduce algorithms to add and multiply correspondences which perform in a reasonable time if the degrees of the associated divisors of the double field are small. Moreover, we show how to compute the differential matrices associated to prime divisors of the double field for arbitrary genus. These matrices give a representation for the homomorphisms or endomorphisms in the additive group (ring) of matrices which is even faithful if the ground field has characteristic zero. As first examples for non-trivial correspondences we investigate multiplication by m endomorphisms. Afterwards we use factorisations of certain bivariate polynomials to construct prime divisors of the double field that are not equivalent to 0 in a coarser sense. Applying the theory of Deuring, these divisors yield homomorphisms between the Jacobi groups of special classes of hyperelliptic function fields. Finally, we generalise the Richelot isogeny to higher genus and by this way derive a class of hyperelliptic function fields given in terms of their defining polynomials which admit non-trivial homomorphisms. These include homomorphisms between the Jacobi groups of hyperelliptic curves of different as well as of equal genus. In addition we provide an explicit method to construct genus 2 function fields the endomorphism ring of which contains a sqrt(2) multiplication with the help of the Cholesky decomposition of a certain matrix.

In this thesis we propose an efficient method to compute the automorphism group of an arbitrary hyperelliptic function field over a given constant field of odd characteristic as well as over its algebraic extensions. Beside theoretical applications, knowing the automorphism group also is useful in cryptography: The Jacobians of hyperelliptic curves have been suggested by Koblitz as groups for cryptographic purposes, because the discrete logarithm is believed to be hard in this kind of groups. In order to obtain "secure" Jacobians, it is necessary to prevent attacks like Pohlig/Hellman's and Duursma/Gaudry/Morain's. The latter is only feasible, if the corresponding function field has an automorphism of large order. According to a theorem by Madan, automorphisms seem to allow the Pohlig/Hellman attack, too. Hence, the function field of a secure Jacobian will most likely have trivial automorphism group. In other words: Computing the automorphism group of a hyperelliptic function field promises to be a quick test for insecure Jacobians. Let us outline our algorithm for computing the automorphism group Aut(F/k) of a hyperelliptic function field F/k. It is well known that Aut(F/k) is finite. For each possible subgroup U of Aut(F/k), Rolf Brandt has given a normal form for F if k is algebraically closed. Hence our problem reduces to deciding, whether a given hyperelliptic function field F=k(x,y), y^2=D_x has a defining equation of the form given by Brandt. This question can be answered using theorem III.18: We have F=k(t,u), u^2=D_t iff x is a fraction of linear polynomials in t and y=pu, where the factor p is a rational function w.r.t. t which can be determined explicitly from the coefficients of x. This condition can be checked efficiently using Gröbner basis techniques. With additional effort, it is also possible to compute Aut(F/k) if k is not algebraically closed. Investigating a huge number of examples one gets the impression that the above motivation of getting a quick test for insecure Jacobians is partially fulfilled: The computation of automorphism groups is quite fast using the suggested algorithm. Furthermore, fields with nontrivial automorphism groups seem to have insecure Jacobians. Only fields of small characteristic seem to have a reasonable chance of having nontrivial automorphisms. Hence, from a cryptographic point of view, computing Aut(F/k) seems to make sense whenever k has small characteristic.

In this dissertation a model of melt spinning (by Doufas, McHugh and Miller) has been investigated. The model (DMM model) which takes into account effects of inertia, air drag, gravity and surface tension in the momentum equation and heat exchange between air and fibre surface, viscous dissipation and crystallization in the energy equation also has a complicated coupling with the microstructure. The model has two parts, before onset of crystallization (BOC) and after onset of crystallization (AOC) with the point of onset of crystallization as the unknown interface. Mathematically the model has been formulated as a Free boundary value problem. Changes have been introduced in the model with respect to the air drag and an interface condition at the free boundary. The mathematical analysis of the nonlinear, coupled free boundary value problem shows that the solution of this problem depends heavily on initial conditions and parameters which renders the global analysis impossible. But by defining a physically acceptable solution, it is shown that for a more restricted set of initial conditions if a unique solution exists for IVP BOC then it is physically acceptable. For this the important property of the positivity of the conformation tensor variables has been proved. Further it is shown that if a physically acceptable solution exists for IVP BOC then under certain conditions it also exists for IVP AOC. This gives an important relation between the initial conditions of IVP BOC and the existence of a physically acceptable solution of IVP AOC. A new investigation has been done for the melt spinning process in the framework of classical mechanics. A Hamiltonian formulation has been done for the melt spinning process for which appropriate Poisson brackets have been derived for the 1-d, elongational flow of a viscoelastic fluid. From the Hamiltonian, cross sectionally averaged balance mass and momentum equations of melt spinning can be derived along with the microstructural equations. These studies show that the complicated problem of melt spinning can also be studied under the framework of classical mechanics. This work provides the basic groundwork on which further investigations on the dynamics of a fibre could be carried out. The Free boundary value problem has been solved numerically using shooting method. Matlab routines have been used to solve the IVPs arising in the problem. Some numerical case studies have been done to study the sensitivity of the ODE systems with respect to the initial guess and parameters. These experiments support the analysis done and throw more light on the stiff nature and ill posedness of the ODE systems. To validate the model, simulations have been performed on sets of data provided by the company. Comparison of numerical results (axial velocity profiles) has been done with the experimental profiles provided by the company. Numerical results have been found to be in excellent agreement with the experimental profiles.

This thesis investigates the constrained form of the spherical Minimax location problem and the spherical Weber location problem. Specifically, we consider the problem of locating a new facility on the surface of the unit sphere in the presence of convex spherical polygonal restricted regions and forbidden regions such that the maximum weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized and the sum of the weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized. It is assumed that a forbidden region is an area on the surface of the unit sphere where travel and facility location are not permitted and that distance is measured using the great circle arc distance. We represent a polynomial time algorithm for the spherical Minimax location problem for the special case where all the existing facilities are located on the surface of a hemisphere. Further, we have developed algorithms for spherical Weber location problem using barrier distance on a hemisphere as well as on the unit sphere.

Competing Neural Networks as Models for Non Stationary Financial Time Series -Changepoint Analysis-
(2005)

The problem of structural changes (variations) play a central role in many scientific fields. One of the most current debates is about climatic changes. Further, politicians, environmentalists, scientists, etc. are involved in this debate and almost everyone is concerned with the consequences of climatic changes. However, in this thesis we will not move into the latter direction, i.e. the study of climatic changes. Instead, we consider models for analyzing changes in the dynamics of observed time series assuming these changes are driven by a non-observable stochastic process. To this end, we consider a first order stationary Markov Chain as hidden process and define the Generalized Mixture of AR-ARCH model(GMAR-ARCH) which is an extension of the classical ARCH model to suit to model with dynamical changes. For this model we provide sufficient conditions that ensure its geometric ergodic property. Further, we define a conditional likelihood given the hidden process and a pseudo conditional likelihood in turn. For the pseudo conditional likelihood we assume that at each time instant the autoregressive and volatility functions can be suitably approximated by given Feedfoward Networks. Under this setting the consistency of the parameter estimates is derived and versions of the well-known Expectation Maximization algorithm and Viterbi Algorithm are designed to solve the problem numerically. Moreover, considering the volatility functions to be constants, we establish the consistency of the autoregressive functions estimates given some parametric classes of functions in general and some classes of single layer Feedfoward Networks in particular. Beside this hidden Markov Driven model, we define as alternative a Weighted Least Squares for estimating the time of change and the autoregressive functions. For the latter formulation, we consider a mixture of independent nonlinear autoregressive processes and assume once more that the autoregressive functions can be approximated by given single layer Feedfoward Networks. We derive the consistency and asymptotic normality of the parameter estimates. Further, we prove the convergence of Backpropagation for this setting under some regularity assumptions. Last but not least, we consider a Mixture of Nonlinear autoregressive processes with only one abrupt unknown changepoint and design a statistical test that can validate such changes.

Die vorliegende Arbeit wurde angeregt durch die in A.N. Borodin(2000) [Version of the Feynman-Kac Formula. Journal of Mathematical Sciences, 99(2):1044-1052, 2000] und in B. Simon(2000) [A Feynman-Kac Formula for Unbounded Semigroups. Canadian Math. Soc. Conf. Proc., 28:317-321, 2000] dargestellten Feynman-Kac-Formeln. Sie beschäftigt sich mit dem Problem, den Geltungsbereich der Feynman-Kac-Formel im Hinblick auf die Bedingungen der Potentiale und der Anfangsbedingung der zugehörigen partiellen Differentialgleichung zu erweitern. Es ist bekannt, dass die Feynman-Kac-Formel für beschränkte Potentiale gilt. Ausserdem gilt sie auch für Anfangsbedingungen, die im Raum \(C_{0}(\mathbb{R}^{n})\) oder im Raum \(C_{c}^{2}(\mathbb{R}^{n})\) liegen. Die Darstellung der Feynman-Kac-Formel für die Anfangsbedingung, die im Raum \(C_{c}^{2}(\mathbb{R}^{n})\) liegt, liefert die Lösung der partiellen Differentialgleichung. Wir können sie auch als stark stetige Halbgruppe auf dem Raum \(C_{0}(\mathbb{R}^{n})\) auffassen. Diese zwei verschiedenen Darstellungen sind äquivalent. In dieser Arbeit zeigen wir zunächst, dass die Feynman-Kac-Formel auch für unbeschränkte Potentiale \(V\) gilt, wobei \(|V(x)| \leq \varepsilon ||x||^{2} + C_{\varepsilon} \) für alle \(\varepsilon > 0; C_{\varepsilon} > 0\) und \(x \in \mathbb{R}^{n}\) ist. Ausserdem zeigen wir, dass sie für alle Anfangsbedingungen \(f\) gilt mit \(x \mapsto e^{-\varepsilon |x|^{2}} f(x) \in H^{2,2}(\mathbb{R}^{n})\). Der Beweis ist wahrscheinlichkeitstheoretisch und benutzt keine Spektraltheorie. Der spektraltheoretische Zugang, in dem eine Darstellung des Operators \(e^{-tH}\), wobei \(H = -\frac{1}{2} \Delta + V\) gegeben wird, wurde von B. Simon(2000) auch auf die obige Klasse von Potentialen ausgeweitet. Wir lassen zusätzlich auch Potentiale der Form \(V = V_{1} + V_{2}\) zu, wobei \(V_{1} \in L^{2}(\mathbb{R}^{3})\) ist und für alle \(\varepsilon > 0\) gibt es \(C_{\varepsilon} > 0\), so dass \(|V_{2}(x)| \leq\varepsilon ||x||^{2} + C_{\varepsilon}\) für alle \(x \in \mathbb{R}^{3}\) ist. Im Gegensatz zur klassischen Situation ist \(e^{-tH}\) jetzt ein unbeschränkter Operator. Schließlich wird in dieser Arbeit auch der Zusammenhang zwischen der Feynman-Kac-It\(\hat{o}\)-Formel, der Feynman-Kac-Formel und der Kolmogorov-Rückwärtsgleichung untersucht.

In many industrial applications fast and accurate solutions of linear elliptic partial differential equations are needed as one of the building blocks of more complex problems. The domains are often highly complex and meshing turns out to be expensive and difficult to obtain with a sufficient quality. In such cases methods with a regular, not boundary adapted grid offer an attractive alternative. The Explicit Jump Immersed Interface Method is one of these algorithms. The main interest of this work lies in solving the linear elasticity equations. For this purpose the existing EJIIM algorithm has been extended to three dimensions. The Poisson equation is always considered in parallel as the most typical representative of elliptic PDEs. During the work it became clear that EJIIM can have very high computational memory requirements. To overcome this problem an improvement, Reduced EJIIM is proposed. The main theoretical result in this work is the proof of the smoothing property of inverses of elliptic finite difference operators in two and three space dimensions. It is an often observed phenomena that the local truncation error is allowed to be of lower order along some lower dimensional manifold without influencing the global convergence order of the solution.

An autoregressive-ARCH model with possible exogeneous variables is treated. We estimate the conditional volatility of the model by applying feedforward networks to the residuals and prove consistency and asymptotic normality for the estimates under the rate of feedforward networks complexity. Recurrent neural networks estimates of GARCH and value-at-risk is studied. We prove consistency and asymptotic normality for the recurrent neural networks ARMA estimator under the rate of recurrent networks complexity. We also overcome the estimation problem in stochastic variance models in discrete time by feedforward networks and the introduction of a new distributions on the innovations. We use the method to calculate market risk such as expected shortfall and Value-at risk. We tested this distribution together with other new distributions on the GARCH family models against other common distributions on the financial market such as Normal Inverse Gaussian, normal and the Student's t- distributions. As an application of the models, some German stocks are studied and the different approaches are compared together with the most common method of GARCH(1,1) fit.

It is considered an analytical model of defaultable bond portfolio in terms of its face value process. The face value process dynamically evolves with time and incorporates changes caused by recovery payment on default followed by purchasing of new bonds. The further studies involve properties, distribution and control of the face value process.

This thesis contains the mathematical treatment of a special class of analog microelectronic circuits called translinear circuits. The goal is to provide foundations of a new coherent synthesis approach for this class of circuits. The mathematical methods of the suggested synthesis approach come from graph theory, combinatorics, and from algebraic geometry, in particular symbolic methods from computer algebra. Translinear circuits form a very special class of analog circuits, because they rely on nonlinear device models, but still allow a very structured approach to network analysis and synthesis. Thus, translinear circuits play the role of a bridge between the "unknown space" of nonlinear circuit theory and the very well exploited domain of linear circuit theory. The nonlinear equations describing the behavior of translinear circuits possess a strong algebraic structure that is nonetheless flexible enough for a wide range of nonlinear functionality. Furthermore, translinear circuits offer several technical advantages like high functional density, low supply voltage and insensitivity to temperature. This unique profile is the reason that several authors consider translinear networks as the key to systematic synthesis methods for nonlinear circuits. The thesis proposes the usage of a computer-generated catalog of translinear network topologies as a synthesis tool. The idea to compile such a catalog has grown from the observation that on the one hand, the topology of a translinear network must satisfy strong constraints which severely limit the number of "admissible" topologies, in particular for networks with few transistors, and on the other hand, the topology of a translinear network already fixes its essential behavior, at least for static networks, because the so-called translinear principle requires the continuous parameters of all transistors to be the same. Even though the admissible topologies are heavily restricted, it is a highly nontrivial task to compile such a catalog. Combinatorial techniques have been adapted to undertake this task. In a catalog of translinear network topologies, prototype network equations can be stored along with each topology. When a circuit with a specified behavior is to be designed, one can search the catalog for a network whose equations can be matched with the desired behavior. In this context, two algebraic problems arise: To set up a meaningful equation for a network in the catalog, an elimination of variables must be performed, and to test whether a prototype equation from the catalog and a specified equation of desired behavior can be "matched", a complex system of polynomial equations must be solved, where the solutions are restricted to a finite set of integers. Sophisticated algorithms from computer algebra are applied in both cases to perform the symbolic computations. All mentioned algorithms have been implemented using C++, Singular, and Mathematica, and are successfully applied to actual design problems of humidity sensor circuitry at Analog Microelectronics GmbH, Mainz. As result of the research conducted, an exhaustive catalog of all static formal translinear networks with at most eight transistors is available. The application for the humidity sensor system proves the applicability of the developed synthesis approach. The details and implementations of the algorithms are worked out only for static networks, but can easily be adopted for dynamic networks as well. While the implementation of the combinatorial algorithms is stand-alone software written "from scratch" in C++, the implementation of the algebraic algorithms, namely the symbolic treatment of the network equations and the match finding, heavily rely on the sophisticated Gröbner basis engine of Singular and thus on more than a decade of experience contained in a special-purpose computer algebra system. It should be pointed out that the thesis contains the new observation that the translinear loop equations of a translinear network are precisely represented by the toric ideal of the network's translinear digraph. Altogether, this thesis confirms and strengthenes the key role of translinear circuits as systematically designable nonlinear circuits.

In this thesis we have discussed the problem of decomposing an integer matrix \(A\) into a weighted sum \(A=\sum_{k \in {\mathcal K}} \alpha_k Y^k\) of 0-1 matrices with the strict consecutive ones property. We have developed algorithms to find decompositions which minimize the decomposition time \(\sum_{k \in {\mathcal K}} \alpha_k\) and the decomposition cardinality \(|\{ k \in {\mathcal K}: \alpha_k > 0\}|\). In the absence of additional constraints on the 0-1 matrices \(Y^k\) we have given an algorithm that finds the minimal decomposition time in \({\mathcal O}(NM)\) time. For the case that the matrices \(Y^k\) are restricted to shape matrices -- a restriction which is important in the application of our results in radiotherapy -- we have given an \({\mathcal O}(NM^2)\) algorithm. This is achieved by solving an integer programming formulation of the problem by a very efficient combinatorial algorithm. In addition, we have shown that the problem of minimizing decomposition cardinality is strongly NP-hard, even for matrices with one row (and thus for the unconstrained as well as the shape matrix decomposition). Our greedy heuristics are based on the results for the decomposition time problem and produce better results than previously published algorithms.

Over the last decades, mathematical modeling has reached nearly all fields of natural science. The abstraction and reduction to a mathematical model has proven to be a powerful tool to gain a deeper insight into physical and technical processes. The increasing computing power has made numerical simulations available for many industrial applications. In recent years, mathematicians and engineers have turned there attention to model solid materials. New challenges have been found in the simulation of solids and fluid-structure interactions. In this context, it is indispensable to study the dynamics of elastic solids. Elasticity is a main feature of solid bodies while demanding a great deal of the numerical treatment. There exists a multitude of commercial tools to simulate the behavior of elastic solids. Anyhow, the majority of these software packages consider quasi-stationary problems. In the present work, we are interested in highly dynamical problems, e.g. the rotation of a solid. The applicability to free-boundary problems is a further emphasis of our considerations. In the last years, meshless or particle methods have attracted more and more attention. In many fields of numerical simulation these methods are on a par with classical methods or superior to them. In this work, we present the Finite Pointset Method (FPM) which uses a moving least squares particle approximation operator. The application of this method to various industrial problems at the Fraunhofer ITWM has shown that FPM is particularly suitable for highly dynamical problems with free surfaces and strongly changing geometries. Thereby, FPM offers exactly the features that we require for the analysis of the dynamics of solid bodies. In the present work, we provide a numerical scheme capable to simulate the behavior of elastic solids. We present the system of partial differential equations describing the dynamics of elastic solids and show its hyperbolic character. In particular, we focus our attention to the constitutive law for the stress tensor and provide evolution equations for the deviatoric part of the stress tensor in order to circumvent limitations of the classical Hooke's law. Furthermore, we present the basic principle of the Finite Pointset Method. In particular, we provide the concept of upwinding in a given direction as a key ingredient for stabilizing hyperbolic systems. The main part of this work describes the design of a numerical scheme based on FPM and an operator splitting to take the different processes within a solid body into account. Each resulting subsystem is treated separately in an adequate way. Hereby, we introduce the notion of system-inherent directions and dimensional upwinding. Finally, a coupling strategy for the subsystems and results are presented. We close this work with some final conclusions and an outlook on future work.

In modern textile manufacturing industries, the function of human eyes to detect disturbances in the production processes which yield defective products is switched to cameras. The camera images are analyzed with various methods to detect these disturbances automatically. There are, however, still problems with in particular semi-regular textures which are typical for weaving patterns. We study three parts of that problem of automatic texture analysis: image smoothing, texture synthesis and defect detection. In image smoothing, we develop a two dimensional kernel smoothing method with locally and directionally adaptive bandwidths allowing correlation in the errors. Two approaches are used in synthesising texture. The first is based on constructing a generalized Ising energy function in the Markov Random Field setup, and for the second, we use two-dimensional periodic bootstrap methods for semi-regular texture synthesis. We treat defect detection as multihypothesis testing problem with the null hypothesis representing the absence of defects and the other hypotheses representing various types of defects. We develop a test based on a nonparametric regression setup, and we use the bootstrap for approximating the distribution of our test statistic.

Since its invention by Sir Allistair Pilkington in 1952, the float glass process has been used to manufacture long thin flat sheets of glass. Today, float glass is very popular due to its high quality and relatively low production costs. When producing thinner glass the main concern is to retain its optical quality, which can be deteriorated during the manufacturing process. The most important stage of this process is the floating part, hence is considered to be responsible for the loss in the optical quality. A series of investigations performed on the finite products showed the existence of many short wave patterns, which strongly affect the optical quality of the glass. Our work is concerned with finding the mechanism for wave development, taking into account all possible factors. In this thesis, we model the floating part of the process by an theoretical study of the stability of two superposed fluids confined between two infinite plates and subjected to a large horizontal temperature gradient. Our approach is to take into account the mixed convection effects (viscous shear and buoyancy), neglecting on the other hand the thermo-capillarity effects due to the length of our domain and the presence of a small stabilizing vertical temperature gradient. Both fluids are treated as Newtonian with constant viscosity. They are immiscible, incompressible, have very different properties and have a free surface between them. The lower fluid is a liquid metal with a very small kinematic viscosity, whereas the upper fluid is less dense. The two fluids move with different velocities: the speed of the upper fluid is imposed, whereas the lower fluid moves as a result of buoyancy effects. We examine the problem by means of small perturbation analysis, and obtain a system of two Orr-Sommerfeld equations coupled with two energy equations, and general interface and boundary conditions. We solve the system analytically in the long- and short- wave limit, by using asymptotic expansions with respect to the wave number. Moreover, we write the system in the form of a general eigenvalue problem and we solve the system numerically by using Chebyshev spectral methods for fluid dynamics. The results (both analytical and numerical) show the existence of the small-amplitude travelling waves, which move with constant velocity for wave numbers in the intermediate range. We show that the stability of the system is ensured in the long wave limit, a fact which is in agreement with the real float glass process. We analyze the stability for a wide range of wave numbers, Reynolds, Weber and Grashof number, and explain the physical implications on the dynamics of the problem. The consequences of the linear stability results are discussed. In reality in the float glass process, the temperature strongly influences the viscosity of both molten metal and hot glass, which will have direct consequences on the stability of the system. We investigate the linear stability of two superposed fluids with temperature dependent viscosities by considering a different model for the viscosity dependence of each fluid. Although, the temperature-viscosity relationships for glass and metal are more complex than those used in our computations, our intention is to emphasize the effects of this dependence on the stability of the system. It is known from the literature that in the case of one fluid, the heat, which causes viscosity to decrease along the domain, usually destabilizes the flow. For the two superposed fluids problem we investigate this behaviour and discuss the consequences of the linear stability in this new case.

Non-commutative polynomial algebras appear in a wide range of applications, from quantum groups and theoretical physics to linear differential and difference equations. In the thesis, we have developed a framework, unifying many important algebras in the classes of \(G\)- and \(GR\)-algebras and studied their ring-theoretic properties. Let \(A\) be a \(G\)-algebra in \(n\) variables. We establish necessary and sufficient conditions for \(A\) to have a Poincar'e-Birkhoff-Witt (PBW) basis. Further on, we show that besides the existence of a PBW basis, \(A\) shares some other properties with the commutative polynomial ring \(\mathbb{K}[x_1,\ldots,x_n]\). In particular, \(A\) is a Noetherian integral domain of Gel'fand-Kirillov dimension \(n\). Both Krull and global homological dimension of \(A\) are bounded by \(n\); we provide examples of \(G\)-algebras where these inequalities are strict. Finally, we prove that \(A\) is Auslander-regular and a Cohen-Macaulay algebra. In order to perform symbolic computations with modules over \(GR\)-algebras, we generalize Gröbner bases theory, develop and respectively enhance new and existing algorithms. We unite the most fundamental algorithms in a suite of applications, called "Gröbner basics" in the literature. Furthermore, we discuss algorithms appearing in the non-commutative case only, among others two-sided Gröbner bases for bimodules, annihilators of left modules and operations with opposite algebras. An important role in Representation Theory is played by various subalgebras, like the center and the Gel'fand-Zetlin subalgebra. We discuss their properties and their relations to Gröbner bases, and briefly comment some aspects of their computation. We proceed with these subalgebras in the chapter devoted to the algorithmic study of morphisms between \(GR\)-algebras. We provide new results and algorithms for computing the preimage of a left ideal under a morphism of \(GR\)-algebras and show both merits and limitations of several methods that we propose. We use this technique for the computation of the kernel of a morphism, decomposition of a module into central characters and algebraic dependence of pairwise commuting elements. We give an algorithm for computing the set of one-dimensional representations of a \(G\)-algebra \(A\), and prove, moreover, that if the set of finite dimensional representations of \(A\) over a ground field \(K\) is not empty, then the homological dimension of \(A\) equals \(n\). All the algorithms are implemented in a kernel extension Plural of the computer algebra system Singular. We discuss the efficiency of computations and provide a comparison with other computer algebra systems. We propose a collection of benchmarks for testing the performance of algorithms; the comparison of timings shows that our implementation outperforms all of the modern systems with the combination of both broad functionality and fast implementation. In the thesis, there are many new non-trivial examples, and also the solutions to various problems, arising in different fields of mathematics. All of them were obtained with the developed theory and the implementation in Plural, most of them are treated computationally in this thesis for the first time.

We work in the setting of time series of financial returns. Our starting point are the GARCH models, which are very common in practice. We introduce the possibility of having crashes in such GARCH models. A crash will be modeled by drawing innovations from a distribution with much mass on extremely negative events, while in ''normal'' times the innovations will be drawn from a normal distribution. The probability of a crash is modeled to be time dependent, depending on the past of the observed time series and/or exogenous variables. The aim is a splitting of risk into ''normal'' risk coming mainly from the GARCH dynamic and extreme event risk coming from the modeled crashes. We will present several incarnations of this modeling idea and give some basic properties like the conditional first and second moments. For the special case that we just have an ARCH dynamic we can establish geometric ergodicity and, thus, stationarity and mixing conditions. Also in the ARCH case we formulate (quasi) maximum likelihood estimators and can derive conditions for consistency and asymptotic normality of the parameter estimates. In a special case of genuine GARCH dynamic we are able to establish L_1-approximability and hence laws of large numbers for the processes itself. We can formulate a conditional maximum likelihood estimator in this case, but cannot completely establish consistency for them. On the practical side we look for the outcome of estimating models with genuine GARCH dynamic and compare the result to classical GARCH models. We apply the models to Value at Risk estimation and see that in comparison to the classical models many of ours seem to work better although we chose the crash distributions quite heuristically.

The aim of the thesis is the numerical investigation of saturated, stationary, incompressible Newtonian flow in porous media when inertia is not negligible. We focus our attention to the Navier-Stokes system with two pressures derived by two-scale homogenization. The thesis is subdivided into five Chapters. After the introductory remarks on porous media, filtration laws and upscaling methods, the first chapter is closed by stating the basic terminology and mathematical fundamentals. In Chapter 2, we start by formulating the Navier-Stokes equations on a periodic porous medium. By two-scale expansions of the velocity and pressure, we formally derive the Navier-Stokes system with two pressures. For the sake of completeness, known existence and uniqueness results are repeated and a convergence proof is given. Finally, we consider Stokes and Navier-Stokes systems with two pressures with respect to their relation to Darcy's law. Chapter 3 and Chapter 4 are devoted to the numerical solution of the nonlinear two pressure system. Therefore, we follow two approaches. The first approach which is developed in Chapter 3 is based on a splitting of the Navier-Stokes system with two pressures into micro and macro problems. The splitting is achieved by Taylor expanding the permeability function or by discretely computing the permeability function. The problems to be solved are a series of Stokes and Navier-Stokes problems on the periodicity cell. The Stokes problems are solved by an Uzawa conjugate gradient method. The Navier-Stokes equations are linearized by a least-squares conjugate gradient method, which leads to the solution of a sequence of Stokes problems. The macro problem consists of solving a nonlinear uniformly elliptic equation of second order. The least-squares linearization is applied to the macro problem leading to a sequence of Poisson problems. All equations will be discretized by finite elements. Numerical results are presented at the end of Chapter 3. The second approach presented in Chapter 4 relies on the variational formulation in a certain Hilbert space setting of the Navier-Stokes system with two pressures. The nonlinear problem is again linearized by the least-squares conjugate gradient method. We obtain a sequence of Stokes systems with two pressures. For the latter systems, we propose a fast solution method which relies on pre-computing Stokes systems on the periodicity cell for finite element basis functions acting as right hand sides. Finally, numerical results are discussed. In Chapter 5 we are concerned with modeling and simulation of the pressing section of a paper machine. We state a two-dimensional model of a press nip which takes into account elasticity and flow phenomena. Nonlinear filtration laws are incorporated into the flow model. We present a numerical solution algorithm and the chapter is closed by a numerical investigation of the model with special focus on inertia effects.

In the first part of this work, called Simple node singularity, are computed matrix factorizations of all isomorphism classes, up to shiftings, of rank one and two, graded, indecomposable maximal Cohen--Macaulay (shortly MCM) modules over the affine cone of the simple node singularity. The subsection 2.2 contains a description of all rank two graded MCM R-modules with stable sheafification on the projective cone of R, by their matrix factorizations. It is given also a general description of such modules, of any rank, over a projective curve of arithmetic genus 1, using their matrix factorizations. The non-locally free rank two MCM modules are computed using an alghorithm presented in the Introduction of this work, that gives a matrix factorization of any extension of two MCM modules over a hypersurface. In the second part, called Fermat surface, are classified all graded, rank two, MCM modules over the affine cone of the Fermat surface. For the classification of the orientable rank two graded MCM R-modules, is used a description of the orientable modules (over normal rings) with the help of codimension two Gorenstein ideals, realized by Herzog and Kühl. It is proven (in section 4), that they have skew symmetric matrix factorizations (over any normal hypersurface ring). For the classification of the non-orientable rank two MCM R-modules, we use a similar idea as in the case of the orientable ones, only that the ideal is not any more Gorenstein.

Tropical geometry is a rather new field of algebraic geometry. The main idea is to replace algebraic varieties by certain piece-wise linear objects in R^n, which can be studied with the aid of combinatorics. There is hope that many algebraically difficult operations become easier in the tropical setting, as the structure of the objects seems to be simpler. In particular, tropical geometry shows promise for application in enumerative geometry. Enumerative geometry deals with the counting of geometric objects that are determined by certain incidence conditions. Until around 1990, not many enumerative questions had been answered and there was not much prospect of solving more. But then Kontsevich introduced the moduli space of stable maps which turned out to be a very useful concept for the study of enumerative geometry. A well-known problem of enumerative geometry is to determine the numbers N_cplx(d,g) of complex genus g plane curves of degree d passing through 3d+g-1 points in general position. Mikhalkin has defined the analogous number N_trop(d,g) for tropical curves and shown that these two numbers coincide (Mikhalkin's Correspondence Theorem). Tropical geometry supplies many new ideas and concepts that could be helpful to answer enumerative problems. However, as a rather new field, tropical geometry has to be studied more thoroughly. This thesis is concerned with the ``translation'' of well-known facts of enumerative geometry to tropical geometry. More precisely, the main results of this thesis are: - a tropical proof of the invariance of N_trop(d,g) of the position of the 3d+g-1 points, - a tropical proof for Kontsevich's recursive formula to compute N_trop(d,0) and - a tropical proof of Caporaso's and Harris' algorithm to compute N_trop(d,g). All results were derived in joint work with my advisor Andreas Gathmann. (Note that tropical research is not restricted to the translation of classically well-known facts, there are actually new results shown by means of tropical geometry that have not been known before. For example, Mikhalkin gave a tropical algorithm to compute the Welschinger invariant for real curves. This shows that tropical geometry can indeed be a tool for a better understanding of classical geometry.)

This thesis deals with modeling aspects of generalized Newtonian and of non-Newtonian fluids, as well as with development and validation of algorithms used in simulation of such fluids. The main contribution in the modeling part are the introduction and analysis of a new model for the generalized Newtonian fluids, where constitutive equation is of an algebraic form. Distinction between shear and extensional viscosities leads to anisotropic viscosity model. It can be considered as a natural extension of the well known (isotropic viscosity) Carreau model, which deals only with shear viscosity properties of the fluid. The proposed model takes additionally into account extensional viscosity properties. Numerical results show that the anisotropic viscosity model gives much better agreement with experimental observations than the isotropic one. Another contribution of the thesis consists of the development and analysis of robust and reliable algorithms for simulation of generalized Newtonian fluids. For such fluids the momentum equations are strongly coupled through mixed derivatives appearing in the viscous term (unlike the case of Newtonian fluids). It is shown in this thesis, that a careful treatment of those derivatives is essential in deriving robust algorithms. A modification of a standard SIMPLE-like algorithm is given, where all the viscous terms from the momentum equations are discretized in an implicit manner. Moreover, it is shown that a block diagonal preconditioner to the viscous operator is good enough to be used in simulations. Furthermore, different solution techniques, namely projection type methods (consists of solving momentum equations and pressure correction equation) and fully coupled methods (momentum and continuity equations are solved together), are compared. It is shown, that explicit discretization of the mixed derivatives lead to stability problems. Further, analytical estimates of eigenvalue distribution for three different preconditioners, applied to the transformed system arising after discretization and linearization of the momentum and continuity equations, are provided. We propose to apply a block Gauss-Seidel preconditioner to the transformed system. The analysis shows, that this preconditioner is able to cluster eigenvalues around unity independent of the transformation step. It is not the case for other preconditioners applied to the transformed system as discussed in the thesis. The block Gauss-Seidel preconditioner has also shown the best behavior (among all preconditioners discussed in the thesis) in numerical experiments. Further contribution consists of comparison and validation of numerical algorithms applied in simulations of non-Newtonian fluids modeled by time integral constitutive equations. Numerical results from simulations of dilute polymer solutions, described by the integral Oldroyd B model, have shown very good quantitative agreement with the results obtained by differential Oldroyd B counterpart in 4:1 planar contraction domain at low Weissenberg numbers. In this case, the Weissenberg number is changed by changing the relaxation time. However, contrary to the differential Oldroyd B model, the integral one allows to perform stable simulations also in the range of high Weissenberg numbers. Moreover, very good agreement with experimental observations has been achieved. Simulations of concentrated polymer solutions (polystyrene and polybutadiene solutions), modeled by the integral Doi Edwards model, supplemented by chain length fluctuations, have shown very good qualitative agreement with the results obtained by its differential approximation in 4:1:4 constriction domain. Again, much higher Weissenberg numbers can be achieved when the integral model is used. Moreover, very good quantitative results with experimental data of polystyrene solution for the first normal stress difference and shear viscosity defined here as the quotient of a shear stress and a shear rate. Finally, comparison of the two methods used for approximating the time integral constitutive equation, namely Deformation Field Method (DFM) and Backward Lagrangian Particle Method (BLPM), is performed. In BLPM the particle paths are recalculated at every time step of the simulations, what has never been tried before. The results have shown, that in the considered geometries both methods give similar results.

For the last decade, optimization of beam orientations in intensity-modulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity profiles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity profiles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity profiles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity profiles for every selection of beam orientations, making the dependence between beam orientations and its intensity profiles less important. This thesis takes advantage of this property to accelerate the optimization process through an approximation of the intensity profiles that are used for multiple selections of beam orientations, saving a considerable amount of calculation time. A dynamic algorithm (DA) and evolutionary algorithm (EA), for beam orientations in IMRT planning will be presented. The DA mimics, automatically, the methods of beam's eye view and observer's view which are recognized in conventional conformal radiation therapy. The EA is based on a dose-volume histogram evaluation function introduced as an attempt to minimize the deviation between the mathematical and clinical optima. To illustrate the efficiency of the algorithms they have been applied to different clinical examples. In comparison to the standard equally spaced beams plans, improvements are reported for both algorithms in all the clinical examples even when, for some cases, fewer beams are used. A smaller number of beams is always desirable without compromising the quality of the treatment plan. It results in a shorter treatment delivery time, which reduces potential errors in terms of patient movements and decreases discomfort.

In this thesis, we have dealt with two modeling approaches of the credit risk, namely the structural (firm value) and the reduced form. In the former one, the firm value is modeled by a stochastic process and the first hitting time of this stochastic process to a given boundary defines the default time of the firm. In the existing literature, the stochastic process, triggering the firm value, has been generally chosen as a diffusion process. Therefore, on one hand it is possible to obtain closed form solutions for the pricing problems of credit derivatives and on the other hand the optimal capital structure of a firm can be analysed by obtaining closed form solutions of firm's corporate securities such as; equity value, debt value and total firm value, see Leland(1994). We have extended this approach by modeling the firm value as a jump-diffusion process. The choice of the jump-diffusion process was a crucial step to obtain closed form solutions for corporate securities. As a result, we have chosen a jump-diffusion process with double exponentially distributed jump heights, which enabled us to analyse the effects of jump on the optimal capital structure of a firm. In the second part of the thesis, by following the reduced form models, we have assumed that the default is triggered by the first jump of a Cox process. Further, by following Schönbucher(2005), we have modeled the forward default intensity of a firm as a geometric Brownian motion and derived pricing formulas for credit default swap options in a more general setup than the ones in Schönbucher(2005).

The fast development of the financial markets in the last decade has lead to the creation of a variety of innovative interest rate related products that require advanced numerical pricing methods. Examples in this respect are products with a complicated strong path-dependence such as a Target Redemption Note, a Ratchet Cap, a Ladder Swap and others. On the other side, the usage of the standard in the literature one-factor Hull and White (1990) type of short rate models allows only for a perfect correlation between all continuously compounded spot rates or Libor rates and thus are not suited for pricing innovative products depending on several Libor rates such as for example a "steepener" option. One possible solution to this problem deliver the two-factor short rate models and in this thesis we consider a two-factor Hull and White (1990) type of a short rate process derived from the Heath, Jarrow, Morton (1992) framework by limiting the volatility structure of the forward rate process to a deterministic one. In this thesis, we often choose to use a variety of modified (binomial, trinomial and quadrinomial) tree constructions as a main numerical pricing tool due to their flexibility and fast convergence and (when there is no closed-form solution) compare their results with fine grid Monte Carlo simulations. For the purpose of pricing the already mentioned innovative short-rate related products, in this thesis we offer and examine two different lattice construction methods for the two-factor Hull-White type of a short rate process which are able to deal easily both with modeling of the mean-reversion of the underlying process and with the strong path-dependence of the priced options. Additionally, we prove that the so-called rotated lattice construction method overcomes the typical for the existing two-factor tree constructions problem with obtaining negative "risk-neutral probabilities". With a variety of numerical examples, we show that this leads to a stability in the results especially in cases of high volatility parameters and negative correlation between the base factors (which is typically the case in reality). Further, noticing that Chan et al (1992) and Ritchken and Sankarasubramanian (1995) showed that option prices are sensitive to the level of the short rate volatility, we examine the pricing of European and American options where the short rate process has a volatility structure of a Cheyette (1994) type. In this relation, we examine the application of the two offered lattice construction methods and compare their results with the Monte Carlo simulation ones for a variety of examples. Additionally, for the pricing of American options with the Monte Carlo method we expand and implement the simulation algorithm of Longstaff and Schwartz (2000). With a variety of numerical examples we compare again the stability and the convergence of the different lattice construction methods. Dealing with the problems of pricing strongly path-dependent options, we come across the cumulative Parisian barrier option pricing problem. We notice that in their classical form, the cumulative Parisian barrier options have been priced both analytically (in a quasi closed form) and with a tree approximation (based on the Forward Shooting Grid algorithm, see e.g. Hull and White (1993), Kwok and Lau (2001) and others). However, we offer an additional tree construction method which can be seen as a direct binomial tree integration that uses the analytically calculated conditional survival probabilities. The advantage of the offered method is on one side that the conditional survival probabilities are easier to calculate than the closed-form solution itself and on the other side that this tree construction is very flexible in the sense that it allows easy incorporation of additional features such as e.g a forward starting one. The obtained results are better than the Forward Shooting Grid tree ones and are very close to the analytical quasi closed form solution. Finally, we pay our attention to pricing another type of innovative interest rate alike products - namely the Longevity bond - whose coupon payments depend on the survival function of a given cohort. Due to the lack of a market for mortality, for the pricing of the Longevity bonds we develop (following Korn, Natcheva and Zipperer (2006)) a framework that contains principles from both Insurance and Financial mathematic. Further on, we calibrate the existing models for the stochastic mortality dynamics to historical German data and additionally offer new stochastic extensions of the classical (deterministic) models of mortality such as the Gompertz and the Makeham one. Finally, we compare and analyze the results of the application of all considered models to the pricing of a Longevity bond on the longevity of the German males.

This thesis discusses methods for the classification of finite projective planes via exhaustive search. In the main part the author classifies all projective planes of order 16 admitting a large quasiregular group of collineations. This is done by a complete search using the computer algebra system GAP. Computational methods for the construction of relative difference sets are discussed. These methods are implemented in a GAP-package, which is available separately. As another result --found in cooperation with U. Dempwolff-- the projective planes defined by planar monomials are classified. Furthermore the full automorphism group of the non-translation planes defined by planar monomials are classified.

The topic of this thesis is the coupling of an atomistic and a coarse scale region in molecular dynamics simulations with the focus on the reflection of waves at the interface between the two scales and the velocity of waves in the coarse scale region for a non-equilibrium process. First, two models from the literature for such a coupling, the concurrent coupling of length scales and the bridging scales method are investigated for a one dimensional system with harmonic interaction. It turns out that the concurrent coupling of length scales method leads to the reflection of fine scale waves at the interface, while the bridging scales method gives an approximated system that is not energy conserving. The velocity of waves in the coarse scale region is in both models not correct. To circumvent this problems, we present a coupling based on the displacement splitting of the bridging scales method together with choosing appropriate variables in orthogonal subspaces. This coupling allows the derivation of evolution equations of fine and coarse scale degrees of freedom together with a reflectionless boundary condition at the interface directly from the Lagrangian of the system. This leads to an energy conserving approximated system with a clear separation between modeling errors an errors due to the numerical solution. Possible approximations in the Lagrangian and the numerical computation of the memory integral and other numerical errors are discussed. We further present a method to choose the interpolation from coarse to atomistic scale in such a way, that the fine scale degrees of freedom in the coarse scale region can be neglected. The interpolation weights are computed by comparing the dispersion relations of the coarse scale equations and the fully atomistic system. With this new interpolation weights, the number of degrees of freedom can be drastically reduced without creating an error in the velocity of the waves in the coarse scale region. We give an alternative derivation of the new coupling with the Mori-Zwanzig projection operator formalism, and explain how the method can be extended to non-zero temperature simulations. For the comparison of the results of the approximated with the fully atomistic system, we use a local stress tensor and the energy in the atomistic region. Examples for the numerical solution of the approximated system for harmonic potentials are given in one and two dimensions.

Die Arbeit beschäftigt sich mit den Charakteren des Normalisators und des Zentralisators eines Sylowtorus. Dabei wird jede Gruppe G vom Lie-Typ als Fixpunktgruppe einer einfach-zusammenhängenden einfachen Gruppe unter einer Frobeniusabbildung aufgefaßt. Für jeden Sylowtorus S der algebraischen Gruppe wird gezeigt, dass die irreduziblen Charaktere des Zentralisators von S in G sich auf ihre Trägheitsgruppe im Normalisator von S fortsetzen. Diese Fragestellung entsteht aus dem Studium der Höhe 0 Charaktere bei endlichen reduktiven Gruppen vom Lie-Typ im Zusammenhang mit der McKay-Vermutung. Neuere Resultate von Isaacs, Malle und Navarro führen diese Vermutung auf eine Eigenschaft von einfachen Gruppen zurück, die sie dann für eine Primzahl gut nennen. Bei Gruppen vom Lie-Typ zeigt das obige Resultat zusammen mit einer aktuellen Arbeit von Malle einige dabei wichtige und notwendige Eigenschaften. Anhand der Steinberg-Präsentation werden vor allem bei den klassischen Gruppen genauere Aussagen über die Struktur des Zentralisators und des Normalisators eines Sylowtorus bewiesen. Wichtig dabei ist die von Tits eingeführte erweiterte Weylgruppe, die starke Verbindungen zu Zopfgruppen besitzt. Das Resultat wird in zahlreichen Einzelfallbetrachtungen gezeigt, bei denen in dieser Arbeit bewiesene Vererbungsregeln von Fortsetzbarkeitseigenschaften benutzt werden.

This thesis introduces so-called cone scalarising functions. They are by construction compatible with a partial order for the outcome space given by a cone. The quality of the parametrisations of the efficient set given by the cone scalarising functions are then investigated. Here, the focus lies on the (weak) efficiency of the generated solutions, the reachability of effiecient points and continuity of the solution set. Based on cone scalarising functions Pareto Navigation a novel, interactive, multiobjective optimisation method is proposed. It changes the ordering cone to realise bounds on partial tradeoffs. Besides, its use of an equality constraint for the changing component of the reference point is a new feature. The efficiency of its solutions, the reachability of efficient solutions and continuity is then analysed. Potential problems are demonstrated using a critical example. Furthermore, the use of Pareto Navigation in a two-phase approach and for nonconvex problems is discussed. Finally, its application for intensity-modulated radiotherapy planning is described. Thereby, its realisation in a graphical user interface is shown.

In this thesis diverse problems concerning inflation-linked products are dealt with. To start with, two models for inflation are presented, including a geometric Brownian motion for consumer price index itself and an extended Vasicek model for inflation rate. For both suggested models the pricing formulas of inflation-linked products are derived using the risk-neutral valuation techniques. As a result Black and Scholes type closed form solutions for a call option on inflation index for a Brownian motion model and inflation evolution for an extended Vasicek model as well as for an inflation-linked bond are calculated. These results have been already presented in Korn and Kruse (2004) [17]. In addition to these inflation-linked products, for the both inflation models the pricing formulas of a European put option on inflation, an inflation cap and floor, an inflation swap and an inflation swaption are derived. Consequently, basing on the derived pricing formulas and assuming the geometric Brownian motion process for an inflation index, different continuous-time portfolio problems as well as hedging problems are studied using the martingale techniques as well as stochastic optimal control methods. These utility optimization problems are continuous-time portfolio problems in different financial market setups and in addition with a positive lower bound constraint on the final wealth of the investor. When one summarizes all the optimization problems studied in this work, one will have the complete picture of the inflation-linked market and both counterparts of market-participants, sellers as well as buyers of inflation-linked financial products. One of the interesting results worth mentioning here is naturally the fact that a regular risk-averse investor would like to sell and not buy inflation-linked products due to the high price of inflation-linked bonds for example and an underperformance of inflation-linked bonds compared to the conventional risk-free bonds. The relevance of this observation is proved by investigating a simple optimization problem for the extended Vasicek process, where as a result we still have an underperforming inflation-linked bond compared to the conventional bond. This situation does not change, when one switches to an optimization of expected utility from the purchasing power, because in its nature it is only a change of measure, where we have a different deflator. The negativity of the optimal portfolio process for a normal investor is in itself an interesting aspect, but it does not affect the optimality of handling inflation-linked products compared to the situation not including these products into investment portfolio. In the following, hedging problems are considered as a modeling of the other half of inflation market that is inflation-linked products buyers. Natural buyers of these inflation-linked products are obviously institutions that have payment obligations in the future that are inflation connected. That is why we consider problems of hedging inflation-indexed payment obligations with different financial assets. The role of inflation-linked products in the hedging portfolio is shown to be very important by analyzing two alternative optimal hedging strategies, where in the first one an investor is allowed to trade as inflation-linked bond and in the second one he is not allowed to include an inflation-linked bond into his hedging portfolio. Technically this is done by restricting our original financial market, which is made of a conventional bond, inflation index and a stock correlated with inflation index, to the one, where an inflation index is excluded. As a whole, this thesis presents a wide view on inflation-linked products: inflation modeling, pricing aspects of inflation-linked products, various continuous-time portfolio problems with inflation-linked products as well as hedging of inflation-related payment obligations.

This work deals with the mathematical modeling and numerical simulation of the dynamics of a curved inertial viscous Newtonian fiber, which is practically applicable to the description of centrifugal spinning processes of glass wool. Neglecting surface tension and temperature dependence, the fiber flow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the fiber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional fiber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. For the numerical simulation of the derived model a finite volume code is developed. The results of the numerical scheme for high Reynolds numbers are validated by comparing them with the analytical solution of the inviscid problem. Moreover, the influence of parameters, like viscosity and rotation on the fiber dynamics are investigated. Finally, an application based on industrial data is performed.

Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.

The new international capital standard for credit institutions (“Basel II”) allows banks to use internal rating systems in order to determine the risk weights that are relevant for the calculation of capital charge. Therefore, it is necessary to develop a system that enfolds the main practices and methods existing in the context of credit rating. The aim of this thesis is to give a suggestion of setting up a credit rating system, where the main techniques used in practice are analyzed, presenting some alternatives and considering the problems that can arise from a statistical point of view. Finally, we will set up some guidelines on how to accomplish the challenge of credit scoring. The judgement of the quality of a credit with respect to the probability of default is called credit rating. A method based on a multi-dimensional criterion seems to be natural, due to the numerous effects that can influence this rating. However, owing to governmental rules, the tendency is that typically one-dimensional criteria will be required in the future as a measure for the credit worthiness or for the quality of a credit. The problem as described above can be resolved via transformation of a multi-dimensional data set into a one-dimensional one while keeping some monotonicity properties and also keeping the loss of information (due to the loss of dimensionality) at a minimum level.

This dissertation is intended to transport the theory of Serre functors into the context of A-infinity-categories. We begin with an introduction to multicategories and closed multicategories, which form a framework in which the theory of A-infinity-categories is developed. We prove that (unital) A-infinity-categories constitute a closed symmetric multicategory. We define the notion of A-infinity-bimodule similarly to Tradler and show that it is equivalent to an A-infinity-functor of two arguments which takes values in the differential graded category of complexes of k-modules, where k is a commutative ground ring. Serre A-infinity-functors are defined via A-infinity-bimodules following ideas of Kontsevich and Soibelman. We prove that a unital closed under shifts A-infinity-category over a field admits a Serre A-infinity-functor if and only if its homotopy category admits an ordinary Serre functor. The proof uses categories and Serre functors enriched in the homotopy category of complexes of k-modules. Another important ingredient is an A-infinity-version of the Yoneda Lemma.

In the theoretical part of this thesis, the difference of the solutions of the elastic and the elastoplastic boundary value problem is analysed, both for linear kinematic and combined linear kinematic and isotropic hardening material. We consider both models in their quasistatic, rate-independent formulation with linearised geometry. The main result of the thesis is, that the differences of the physical obervables (the stresses, strains and displacements) can be expressed as composition of some linear operators and play operators with respect to the exterior forces. Explicit homotopies between both solutions are presented. The main analytical devices are Lipschitz estimates for the stop and the play operator. We present some generalisations of the standard estimates. They allow different input functions, different initial memories and different scalar products. Thereby, the underlying time involving function spaces are the Sobolov spaces of first order with arbitrary integrability exponent between one and infinity. The main results can easily be generalised for the class of continuous functions with bounded total variation. In the practical part of this work, a method to correct the elastic stress tensor over a long time interval at some chosen points of the body is presented and analysed. In contrast to widespread uniaxial corrections (Neuber or ESED), our method takes multiaxiality phenomena like cyclic hardening/softening, ratchetting and non-masing behaviour into account using Jiang's model of elastoplasticity. It can be easily adapted to other constitutive elastoplastic material laws. The theory for our correction model is developped for linear kinematic hardening material, for which error estimated are derived. Our numerical algorithm is very fast and designed for the case that the elastic stress is piecewise linear. The results for the stresses can be significantly improved with Seeger's empirical strain constraint. For the improved model, a simple predictor-correcor algorithm for smooth input loading is established.

The present work deals with the (global and local) modeling of the windfield on the real topography of Rheinland-Pfalz. Thereby the focus is on the construction of a vectorial windfield from low, irregularly distributed data given on a topographical surface. The developed spline procedure works by means of vectorial (homogeneous, harmonic) polynomials (outer harmonics) which control the oscillation behaviour of the spline interpoland. In the process the characteristic of the spline curvature which defines the energy norm is assumed to be on a sphere inside the Earth interior and not on the Earth’s surface. The numerical advantage of this method arises from the maximum-minimum principle for harmonic functions.

Diese Arbeit beschäftigt sich mit Methoden zur Klassifikation von Ovoiden in quadratischen Räumen. Die Anwendung der dazu entwickelten Algorithmen erfolgt hauptsächlich in achtdimensionalen Räumen speziell über den Körpern GF(7), GF(8) und GF(9). Zu verschiedenen, zumeist kleinen, zyklischen Gruppen werden hier die unter diesen Gruppen invarianten Ovoide bestimmt. Die bei dieser Suche auftretenden Ovoide sind alle bereits bekannt. Es ergeben sich jedoch Restriktionen an die Stabilisatoren gegebenenfalls existierender, unbekannter Ovoide.

The main aim of this work was to obtain an approximate solution of the seismic traveltime tomography problems with the help of splines based on reproducing kernel Sobolev spaces. In order to be able to apply the spline approximation concept to surface wave as well as to body wave tomography problems, the spherical spline approximation concept was extended for the case where the domain of the function to be approximated is an arbitrary compact set in R^n and a finite number of discontinuity points is allowed. We present applications of such spline method to seismic surface wave as well as body wave tomography, and discuss the theoretical and numerical aspects of such applications. Moreover, we run numerous numerical tests that justify the theoretical considerations.

Zwei zentrale Probleme der modernen Finanzmathematik sind die Portfolio-Optimierung und die Optionsbewertung. Während es bei der Portfolio-Optimierung darum geht, das Vermögen optimal auf verschiedene Anlagemöglichkeiten zu verteilen, versucht die Optionsbewertung faire Preise von derivativen Finanzinstrumenten zu bestimmen. In dieser Arbeit werden Fragestellungen aus beiden dieser Themenbereiche bearbeitet. Die Arbeit beginnt mit einem Kapitel über Grundlagen, in dem zum Beispiel das Portfolio-Problem von Merton dargestellt und die Black/Scholes-Formel zur Optionsbewertung hergeleitet wird. In Kapitel 2 wird das Portfolio-Problem von Morton und Pliska betrachtet, die in das Merton-Modell fixe Transaktionskosten eingeführt haben. Dabei muß der Investor bei jeder Transaktion einen fixen Anteil vom derzeitigen Vermögen als Kosten abführen. Es wird die asymptotische Approximation dieses Modells von Atkinson und Wilmott vorgestellt und die optimale Portfoliostrategie aus den Marktparametern hergeleitet. Danach werden die tatsächlichen Transaktionskosten abgeschätzt und ein User Guide zur praktischen Anwendung dieses Transaktionskostenmodells angegeben. Zum Schluß wird das Modell numerisch analysiert, indem unter anderem die erwartete Handelszeit und die Güte der Abschätzung der tatsächlichen Transaktionskosten berechnet werden. Ein Portfolio-Problem mit internationalen Märkten wird in Kapitel 3 vorgestellt. Dem Investor steht zusätzlich zu seinem Heimatland noch ein weiteres Land für seine Vermögensanlagen zur Verfügung. Dabei werden die Preisprozesse für die ausländischen Wertpapiere mit einem stochastischen Wechselkurs in die Heimatwährung umgerechnet. In einer statischen Analyse wird unter anderem berechnet, wieviel weniger Vermögen der Investor benötigt, um das gleiche erwartete Endvermögen zu erhalten wie in dem Fall, wenn ihm keine Auslandsanlagen zur Verfügung stehen. Kapitel 4 behandelt drei verschiedene Portfolio-Probleme mit Sprung-Diffusions-Prozessen. Nach der Herleitung eines Verifikationssatzes wird das Problem bei Anlagemöglichkeit in eine Aktie und in ein Geldmarktkonto jeweils für eine konstante und eine stochastische Zinsrate untersucht. Im ersten Fall wird eine implizite Darstellung für den optimalen Portfolioprozeß und eine Bedingung angegeben, unter der diese Darstellung eindeutig lösbar ist. Außerdem wird der optimale Portfolioprozeß für verschiedene Verteilungen für die Sprunghöhe untersucht. Im Falle einer stochastischen Zinsrate kann nur ein Kandidat für den optimalen Lösungsprozeß angeben werden. Dieser hat wieder eine implizite Darstellung. Das letzte Portfolio-Problem ist eine Abwandlung des Modells aus Kapitel 3. Wird dort der Wechselkurs durch eine geometrisch Brownsche Bewegung modelliert, ist er hier ein reiner Sprungprozeß. Es wird wieder der optimale Portfolioprozeß hergeleitet, wobei ein Anteil davon unter Umständen nur numerisch lösbar ist. Eine hinreichende Bedingung für die Lösbarkeit wird angegeben. In Kapitel 5 werden verschiedene Bewertungsansätze für Optionen auf Bondindizes präsentiert. Es wird eine Methode vorgestellt, mit der die Optionen anhand von Marktpreisen bewertet werden können. Für den Fall, daß es nicht genug Marktpreise gibt, wird ein Verfahren angegeben, um den Bondindex realitätsnah zu simulieren und künstliche Marktpreise zu erzeugen. Diese Preise können dann für eine Kalibrierung verwendet werden.

The thesis is concerned with multiscale approximation by means of radial basis functions on hierarchically structured spherical grids. A new approach is proposed to construct a biorthogonal system of locally supported zonal functions. By use of this biorthogonal system of locally supported zonal functions, a spherical fast wavelet transform (SFWT) is established. Finally, based on the wavelet analysis, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators are shown to be efficiently and economically solvable.

Nonlinear diffusion filtering of images using the topological gradient approach to edges detection
(2007)

In this thesis, the problem of nonlinear diffusion filtering of gray-scale images is theoretically and numerically investigated. In the first part of the thesis, we derive the topological asymptotic expansion of the Mumford-Shah like functional. We show that the dominant term of this expansion can be regarded as a criterion to edges detection in an image. In the numerical part, we propose the finite volume discretization for the Catté et al. and the Weickert diffusion filter models. The proposed discretization is based on the integro-interpolation method introduced by Samarskii. The numerical schemes are derived for the case of uniform and nonuniform cell-centered grids of the computational domain \(\Omega \subset \mathbb{R}^2\). In order to generate a nonuniform grid, the adaptive coarsening technique is proposed.

In this dissertation we present analysis of macroscopic models for slow dense granular flow. Models are derived from plasticity theory with yield condition and flow rule. Corner stone equations are conservation of mass and conservation of momentum with special constitutive law. Such models are considered in the class of generalised Newtonian fluids, where viscosity depends on the pressure and modulo of the strain-rate tensor. We showed the hyperbolic nature for the evolutionary model in 1D and ill-posed behaviour for 2D and 3D. The steady state equations are always hyperbolic. In the 2D problem we derived a prototype nonlinear backward parabolic equation for the velocity and the similar equation for the shear-rate. Analysis of derived PDE showed the finite blow up time. Blow up time depends on the initial condition. Full 2D and antiplane 3D model were investigated numerically with finite element method. For 2D model we showed the presence of boundary layers. Antiplane 3D model was investigated with the Runge Kutta Discontinuous Galerkin method with mesh addoption. Numerical results confirmed that such a numerical method can be a good choice for the simulations of the slow dense granular flow.

In the thesis the author presents a mathematical model which describes the behaviour of the acoustical pressure (sound), produced by a bass loudspeaker. The underlying physical propagation of sound is described by the non--linear isentropic Euler system in a Lagrangian description. This system is expanded via asymptotical analysis up to third order in the displacement of the membrane of the loudspeaker. The differential equations which describe the behaviour of the key note and the first order harmonic are compared to classical results. The boundary conditions, which are derived up to third order, are based on the principle that the small control volume sticks to the boundary and is allowed to move only along it. Using classical results of the theory of elliptic partial differential equations, the author shows that under appropriate conditions on the input data the appropriate mathematical problems admit, by the Fredholm alternative, unique solutions. Moreover, certain regularity results are shown. Further, a novel Wave Based Method is applied to solve appropriate mathematical problems. However, the known theory of the Wave Based Method, which can be found in the literature, so far, allowed to apply WBM only in the cases of convex domains. The author finds the criterion which allows to apply the WBM in the cases of non--convex domains. In the case of 2D problems we represent this criterion as a small proposition. With the aid of this proposition one is able to subdivide arbitrary 2D domains such that the number of subdomains is minimal, WBM may be applied in each subdomain and the geometry is not altered, e.g. via polygonal approximation. Further, the same principles are used in the case of 3D problem. However, the formulation of a similar proposition in cases of 3D problems has still to be done. Next, we show a simple procedure to solve an inhomogeneous Helmholtz equation using WBM. This procedure, however, is rather computationally expensive and can probably be improved. Several examples are also presented. We present the possibility to apply the Wave Based Technique to solve steady--state acoustic problems in the case of an unbounded 3D domain. The main principle of the classical WBM is extended to the case of an external domain. Two numerical examples are also presented. In order to apply the WBM to our problems we subdivide the computational domain into three subdomains. Therefore, on the interfaces certain coupling conditions are defined. The description of the optimization procedure, based on the principles of the shape gradient method and level set method, and the results of the optimization finalize the thesis.

In this thesis, the quasi-static Biot poroelasticity system in bounded multilayered domains in one and three dimensions is studied. In more detail, in the one-dimensional case, a finite volume discretization for the Biot system with discontinuous coefficients is derived. The discretization results in a difference scheme with harmonic averaging of the coefficients. Detailed theoretical analysis of the obtained discrete model is performed. Error estimates, which establish convergence rates for both primary as well as flux unknowns are derived. Besides, modified and more accurate discretizations, which can be applied when the interface position coincides with a grid node, are obtained. These discretizations yield second order convergence of the fluxes of the problem. Finally, the solver for the solution of the produced system of linear equations is developed and extensively tested. A number of numerical experiments, which confirm the theoretical considerations are performed. In the three-dimensional case, the finite volume discretization of the system involves construction of special interpolating polynomials in the dual volumes. These polynomials are derived so that they satisfy the same continuity conditions across the interface, as the original system of PDEs. This technique allows to obtain such a difference scheme, which provides accurate computation of the primary as well as of the flux unknowns, including the points adjacent to the interface. Numerical experiments, based on the obtained discretization, show second order convergence for auxiliary problems with known analytical solutions. A multigrid solver, which incorporates the features of the discrete model, is developed in order to solve efficiently the linear system, produced by the finite volume discretization of the three-dimensional problem. The crucial point is to derive problem-dependent restriction and prolongation operators. Such operators are a well-known remedy for the scalar PDEs with discontinuous coefficients. Here, these operators are derived for the system of PDEs, taking into account interdependence of different unknowns within the system. In the derivation, the interpolating polynomials from the finite volume discretization are employed again, linking thus the discretization and the solution processes. The developed multigrid solver is tested on several model problems. Numerical experiments show that, due to the proper problem-dependent intergrid transfer, the multigrid solver is robust with respect to the discontinuities of the coefficients of the system. In the end, the poroelasticity system with discontinuous coefficients is used to model a real problem. The Biot model, describing this problem, is treated numerically, i.e., discretized by the developed finite volume techniques and then solved by the constructed multigrid solver. Physical characteristics of the process, such as displacement of the skeleton, pressure of the fluid, components of the stress tensor, are calculated and then presented at certain cross-sections.

The lattice Boltzmann method (LBM) is a numerical solver for the Navier-Stokes equations, based on an underlying molecular dynamic model. Recently, it has been extended towardsthe simulation of complex fluids. We use the asymptotic expansion technique to investigate the standard scheme, the initialization problem and possible developments towards moving boundary and fluid-structure interaction problems. At the same time, it will be shown how the mathematical analysis can be used to understand and improve the algorithm. First of all, we elaborate the tool "asymptotic analysis", proposing a general formulation of the technique and explaining the methods and the strategy we use for the investigation. A first standard application to the LBM is described, which leads to the approximation of the Navier-Stokes solution starting from the lattice Boltzmann equation. As next, we extend the analysis to investigate origin and dynamics of initial layers. A class of initialization algorithms to generate accurate initial values within the LB framework is described in detail. Starting from existing routines, we will be able to improve the schemes in term of efficiency and accuracy. Then we study the features of a simple moving boundary LBM. In particular, we concentrate on the initialization of new fluid nodes created by the variations of the computational fluid domain. An overview of existing possible choices is presented. Performing a careful analysis of the problem we propose a modified algorithm, which produces satisfactory results. Finally, to set up an LBM for fluid structure interaction, efficient routines to evaluate forces are required. We describe the Momentum Exchange algorithm (MEA). Precise accuracy estimates are derived, and the analysis leads to the construction of an improved method to evaluate the interface stresses. In conclusion, we test the defined code and validate the results of the analysis on several simple benchmarks. From the theoretical point of view, in the thesis we have developed a general formulation of the asymptotic expansion, which is expected to offer a more flexible tool in the investigation of numerical methods. The main practical contribution offered by this work is the detailed analysis of the numerical method. It allows to understand and improve the algorithms, and construct new routines, which can be considered as starting points for future researches.

In this thesis we classify simple coherent sheaves on Kodaira fibers of types II, III and IV (cuspidal and tacnode cubic curves and a plane configuration of three concurrent lines). Indecomposable vector bundles on smooth elliptic curves were classified in 1957 by Atiyah. In works of Burban, Drozd and Greuel it was shown that the categories of vector bundles and coherent sheaves on cycles of projective lines are tame. It turns out, that all other degenerations of elliptic curves are vector-bundle-wild. Nevertheless, we prove that the category of coherent sheaves of an arbitrary reduced plane cubic curve, (including the mentioned Kodaira fibers) is brick-tame. The main technical tool of our approach is the representation theory of bocses. Although, this technique was mainly used for purely theoretical purposes, we illustrate its computational potential for investigating tame behavior in wild categories. In particular, it allows to prove that a simple vector bundle on a reduced cubic curve is determined by its rank, multidegree and determinant, generalizing Atiyah's classification. Our approach leads to an interesting class of bocses, which can be wild but are brick-tame.

The nowadays increasing number of fields where large quantities of data are collected generates an emergent demand for methods for extracting relevant information from huge databases. Amongst the various existing data mining models, decision trees are widely used since they represent a good trade-off between accuracy and interpretability. However, one of their main problems is that they are very instable, which complicates the process of the knowledge discovery because the users are disturbed by the different decision trees generated from almost the same input learning samples. In the current work, binary tree classifiers are analyzed and partially improved. The analysis of tree classifiers goes from their topology from the graph theory point of view to the creation of a new tree classification model by means of combining decision trees and soft comparison operators (Mlynski, 2003) with the purpose to not only overcome the well known instability problem of decision trees, but also in order to confer the ability of dealing with uncertainty. In order to study and compare the structural stability of tree classifiers, we propose an instability coefficient which is based on the notion of Lipschitz continuity and offer a metric to measure the proximity between decision trees. This thesis converges towards its main part with the presentation of our model ``Soft Operators Decision Tree\'\' (SODT). Mainly, we describe its construction, application and the consistency of the mathematical formulation behind this. Finally we show the results of the implementation of SODT and compare numerically the stability and accuracy of a SODT and a crisp DT. The numerical simulations support the stability hypothesis and a smaller tendency to overfitting the training data with SODT than with crisp DT is observed. A further aspect of this inclusion of soft operators is that we choose them in a way so that the resulting goodness function (used by this method) is differentiable and thus allows to calculate the best split points by means of gradient descent methods. The main drawback of SODT is the incorporation of the unpreciseness factor, which increases the complexity of the algorithm.

The desire to model in ever increasing detail geometrical and physical features has lead to a steady increase in the number of points used in field solvers. While many solvers have been ported to parallel machines, grid generators have left behind. Sequential generation of meshes of large size is extremely problematic both in terms of time and memory requirements. Therefore, the need for developing parallel mesh generation technique is well justified. In this work a novel algorithm is presented for automatic parallel generation of tetrahedral computational meshes based on geometrical domain decomposition. It has a potential to remove this bottleneck. Different domain decomposition approaches and criteria have been investigated. Questions regarding time and memory consumption, efficiency of computations and quality of generated surface and volume meshes have been considered. As a result of the work parTgen (partitioner and parallel tetrahedral mesh generator) software package based on the developed algorithm has been created. Several real-life examples of relatively complex structures involving large meshes (of order 10^7-10^8 elements) are given. It has been shown that high mesh quality is achieved. Memory and time consumption are reduced significantly, and parallel algorithm is efficient.

The dissertation deals with the application of Hub Location models in public transport planning. The author proposes new mathematical models along with different solution approaches to solve the instances. Moreover, a novel multi-period formulation is proposed as an extension to the general model. Due to its high complexity heuristic approaches are formulated to find a good solution within a reasonable amount of time.

A modular level set algorithm is developed to study the interface and its movement for free moving boundary problems. The algorithm is divided into three basic modules : initialization, propagation and contouring. Initialization is the process of finding the signed distance function from closed objects. We discuss here, a methodology to find an accurate signed distance function from a closed, simply connected surface discretized by triangulation. We compute the signed distance function using the direct method and it is stored efficiently in the neighborhood of the interface by a narrow band level set method. A novel approach is employed to determine the correct sign of the distance function at convex-concave junctions of the surface. The accuracy and convergence of the method with respect to the surface resolution is studied. It is shown that the efficient organization of surface and narrow band data structures enables the solution of large industrial problems. We also compare the accuracy of the signed distance function by direct approach with Fast Marching Method (FMM). It is found that the direct approach is more accurate than FMM. Contouring is performed through a variant of the marching cube algorithm used for the isosurface construction from volumetric data sets. The algorithm is designed to keep foreground and background information consistent, contrary to the neutrality principle followed for surface rendering in computer graphics. The algorithm ensures that the isosurface triangulation is closed, non-degenerate and non-ambiguous. The constructed triangulation has desirable properties required for the generation of good volume meshes. These volume meshes are used in the boundary element method for the study of linear electrostatics. For estimating surface properties like interface position, normal and curvature accurately from a discrete level set function, a method based on higher order weighted least squares is developed. It is found that least squares approach is more accurate than finite difference approximation. Furthermore, the method of least squares requires a more compact stencil than those of finite difference schemes. The accuracy and convergence of the method depends on the surface resolution and the discrete mesh width. This approach is used in propagation for the study of mean curvature flow and bubble dynamics. The advantage of this approach is that the curvature is not discretized explicitly on the grid and is estimated on the interface. The method of constant velocity extension is employed for the propagation of the interface. With least squares approach, the mean curvature flow has considerable reduction in mass loss compared to finite difference techniques. In the bubble dynamics, the modules are used for the study of a bubble under the influence of surface tension forces to validate Young-Laplace law. It is found that the order of curvature estimation plays a crucial role for calculating accurate pressure difference between inside and outside of the bubble. Further, we study the coalescence of two bubbles under surface tension force. The application of these modules to various industrial problems is discussed.

This thesis is devoted to the study of tropical curves with emphasis on their enumerative geometry. Major results include a conceptual proof of the fact that the number of rational tropical plane curves interpolating an appropriate number of general points is independent of the choice of points, the computation of intersection products of Psi-classes on the moduli space of rational tropical curves, a computation of the number of tropical elliptic plane curves of given degree and fixed tropical j-invariant as well as a tropical analogue of the Riemann-Roch theorem for algebraic curves. The result are obtained in joint work with Hannah Markwig and/or Andreas Gathmann.

In this thesis, the coupling of the Stokes equations and the Biot poroelasticity equations for fluid flow normal to porous media is investigated. For that purpose, the transmission conditions across the interfaces between the fluid regions and the porous domain are derived. A proper algorithm is formulated and numerical examples are presented. First, the transmission conditions for the coupling of various physical phenomena are reviewed. For the coupling of free flow with porous media, it has to be distinguished whether the fluid flows tangentially or perpendicularly to the porous medium. This plays an essential role for the formulation of the transmission conditions. In the thesis, the transmission conditions for the coupling of the Stokes equations and the Biot poroelasticity equations for fluid flow normal to the porous medium in one and three dimensions are derived. With these conditions, the continuous fully coupled system of equations in one and three dimensions is formulated. In the one dimensional case the extreme cases, i.e. fluid-fluid interface and fluid impermeable solid interface, are considered. Two chapters of the thesis are devoted to the discretisation of the fully coupled Biot-Stokes system for matching and non-matching grids, respectively. Therefor, operators are introduced that map the internal and boundary variables to the respective domains via Stokes equations, Biot equations and the transmission conditions. The matrix representation of some of these operators is shown. For the non-matching case, a cell-centred grid in the fluid region and a staggered grid in the porous domain are used. Hence, the discretisation is more difficult, since an additional grid on the interface has to be introduced. Corresponding matching functions are needed to transfer the values properly from one domain to the other across the interface. In the end, the iterative solution procedure for the Biot-Stokes system on non-matching grids is presented. For this purpose, a short review of domain decomposition methods is given, which are often the methods of choice for such coupled problems. The iterative solution algorithm is presented, including details like stopping criteria, choice and computation of parameters, formulae for non-dimensionalisation, software and so on. Finally, numerical results for steady state examples, depth filtration and cake filtration examples are presented.

In this thesis, we investigate a statistical model for precipitation time series recorded at a single site. The sequence of observations consists of rainfall amounts aggregated over time periods of fixed duration. As the properties of this sequence depend strongly on the length of the observation intervals, we follow the approach of Rodriguez-Iturbe et. al. [1] and use an underlying model for rainfall intensity in continuous time. In this idealized representation, rainfall occurs in clusters of rectangular cells, and each observations is treated as the sum of cell contributions during a given time period. Unlike the previous work, we use a multivariate lognormal distribution for the temporal structure of the cells and clusters. After formulating the model, we develop a Markov-Chain Monte-Carlo algorithm for fitting it to a given data set. A particular problem we have to deal with is the need to estimate the unobserved intensity process alongside the parameter of interest. The performance of the algorithm is tested on artificial data sets generated from the model. [1] I. Rodriguez-Iturbe, D. R. Cox, and Valerie Isham. Some models for rainfall based on stochastic point processes. Proc. R. Soc. Lond. A, 410:269-288, 1987.

Grey-box modelling deals with models which are able to integrate the following two kinds of information: qualitative (expert) knowledge and quantitative (data) knowledge, with equal importance. The doctoral thesis has two aims: the improvement of an existing neuro-fuzzy approach (LOLIMOT algorithm), and the development of a new model class with corresponding identification algorithm, based on multiresolution analysis (wavelets) and statistical methods. The identification algorithm is able to identify both hidden differential dynamics and hysteretic components. After the presentation of some improvements of the LOLIMOT algorithm based on readily normalized weight functions derived from decision trees, we investigate several mathematical theories, i.e. the theory of nonlinear dynamical systems and hysteresis, statistical decision theory, and approximation theory, in view of their applicability for grey-box modelling. These theories show us directly the way onto a new model class and its identification algorithm. The new model class will be derived from the local model networks through the following modifications: Inclusion of non-Gaussian noise sources; allowance of internal nonlinear differential dynamics represented by multi-dimensional real functions; introduction of internal hysteresis models through two-dimensional "primitive functions"; replacement respectively approximation of the weight functions and of the mentioned multi-dimensional functions by wavelets; usage of the sparseness of the matrix of the wavelet coefficients; and identification of the wavelet coefficients with Sequential Monte Carlo methods. We also apply this modelling scheme to the identification of a shock absorber.

We present a new efficient and robust algorithm for topology optimization of 3D cast parts. Special constraints are fulfilled to make possible the incorporation of a simulation of the casting process into the optimization: In order to keep track of the exact position of the boundary and to provide a full finite element model of the structure in each iteration, we use a twofold approach for the structural update. A level set function technique for boundary representation is combined with a new tetrahedral mesh generator for geometries specified by implicit boundary descriptions. Boundary conditions are mapped automatically onto the updated mesh. For sensitivity analysis, we employ the concept of the topological gradient. Modification of the level set function is reduced to efficient summation of several level set functions, and the finite element mesh is adapted to the modified structure in each iteration of the optimization process. We show that the resulting meshes are of high quality. A domain decomposition technique is used to keep the computational costs of remeshing low. The capabilities of our algorithm are demonstrated by industrial-scale optimization examples.

This thesis shows an approach to combine the advantages of MBS tyre models and FEM models for the use in full vehicle simulations. The procedure proposed in this thesis aims to describe a nonlinear structure with a Finite Element approach combined with nonlinear model reduction methods. Unlike most model reduction methods - as the frequently used Craig-Bampton approach - the method of Proper Orthogonal Decomposition (POD) offers a projection basis suitable for nonlinear models. For the linear wave equation, the POD method is studied comparing two different choices of snapshot sets. Set 1 consists of deformation snapshots, and set 2 additionally contains velocities and accelerations. An error analysis proves no convergence guarantee for deformations only. For inclusion of derivatives it yields an error bound diminishing for small time steps. The numerical results show a better behaviour for the derivative snapshot method, as long as the sum of the left-over eigenvalues is significant. For the reduction of nonlinear systems - especially when using commercial software - it is necessary to decouple the reduced surrogate system from the full model. To achieve this, a lookup table approach is presented. It makes use of the preceding computation step with the full model necessary to set up the POD basis (training step). The nonlinear term of inner forces and the stiffness matrix are output and stored in a lookup table for the reduced system. Numerical examples include a nonlinear string in Matlab and an airspring computed in Abaqus. Both examples show that effort reductions of two orders of magnitude are possible within a reasonable error tolerance. The lookup approaches perform faster than the Trajectory Piecewise Linear (TPWL) method and produce comparable errors. Furthermore, the Abaqus example shows the influence of training excitation on the quality of the reduced model.

This thesis is devoted to deal with the stochastic optimization problems in various situations with the aid of the Martingale method. Chapter 2 discusses the Martingale method and its applications to the basic optimization problems, which are well addressed in the literature (for example, [15], [23] and [24]). In Chapter 3, we study the problem of maximizing expected utility of real terminal wealth in the presence of an index bond. Chapter 4, which is a modification of the original research paper joint with Korn and Ewald [39], investigates an optimization problem faced by a DC pension fund manager under inflationary risk. Although the problem is addressed in the context of a pension fund, it presents a way of how to deal with the optimization problem, in the case there is a (positive) endowment. In Chapter 5, we turn to a situation where the additional income, other than the income from returns on investment, is gained by supplying labor. Chapter 6 concerns a situation where the market considered is incomplete. A trick of completing an incomplete market is presented there. The general theory which supports the discussion followed is summarized in the first chapter.

This dissertation deals with the optimization of the web formation in a spunbond process for the production of artificial fabrics. A mathematical model of the process is presented. Based on the model, two kind of attributes to be optimized are considered, those related with the quality of the fabric and those describing the stability of the production process. The problem falls in the multicriteria and decision making framework. The functions involved on the model of the process are non linear, non convex and non differentiable. A strategy in two steps; exploration and continuation, is proposed to approximate numerically the Pareto frontier and alternative methods are proposed to navigate the set and support the decision making process. The proposed strategy is applied to a particular production process and numerical results are presented.

In many medical, financial, industrial, e.t.c. applications of statistics, the model parameters may undergo changes at unknown moment of time. In this thesis, we consider change point analysis in a regression setting for dichotomous responses, i.e. they can be modeled as Bernoulli or 0-1 variables. Applications are widespread including credit scoring in financial statistics and dose-response relations in biometry. The model parameters are estimated using neural network method. We show that the parameter estimates are identifiable up to a given family of transformations and derive the consistency and asymptotic normality of the network parameter estimates using the results in Franke and Neumann Franke Neumann (2000). We use a neural network based likelihood ratio test statistic to detect a change point in a given set of data and derive the limit distribution of the estimator using the results in Gombay and Horvath (1994,1996) under the assumption that the model is properly specified. For the misspecified case, we develop a scaled test statistic for the case of one-dimensional parameter. Through simulation, we show that the sample size, change point location and the size of change influence change point detection. In this work, the maximum likelihood estimation method is used to estimate a change point when it has been detected. Through simulation, we show that change point estimation is influenced by the sample size, change point location and the size of change. We present two methods for determining the change point confidence intervals: Profile log-likelihood ratio and Percentile bootstrap methods. Through simulation, the Percentile bootstrap method is shown to be superior to profile log-likelihood ratio method.

In this work we study and investigate the minimum width annulus problem (MWAP), the circle center location or circle location problem (CLP) and the point center location or point location problem (PLP) on Rectilinear and Chebyshev planes as well as in networks. The relations between the problems have served as a basis for finding of elegant solution, algorithms for both new and well known problems. So, MWAP was formulated and investigated in Rectilinear space. In contrast to Euclidean metric, MWAP and PLP have at least one common optimal point. Therefore, MWAP on Rectilinear plane was solved in linear time with the help of PLP. Hence, the solution sequence was PLP-->MWAP. It was shown, that MWAP and CLP are equivalent. Thus, CLP can be also solved in linear time. The obtained results were analysed and transfered to Chebyshev metric. After that, the notions of circle, sphere and annulus in networks were introduced. It should be noted that the notion of a circle in a network is different from the notion of a cycle. An O(mn) time algorithm for solution of MWAP was constructed and implemented. The algorithm is based on the fact that the middle point of an edge represents an optimal solution of a local minimum width annulus on this edge. The resulting complexity is better than the complexity O(mn+n^2logn) in unweighted case of the fastest known algorithm for minimizing of the range function, which is mathematically equivalent to MWAP. MWAP in unweighted undirected networks was extended to the MWAP on subsets and to the restricted MWAP. Resulting problems were analysed and solved. Also the p–minimum width annulus problem was formulated and explored. This problem is NP–hard. However, the p–MWAP has been solved in polynomial O(m^2n^3p) time with a natural assumption, that each minimum width annulus covers all vertexes of a network having distances to the central point of annulus less than or equal to the radius of its outer circle. In contrast to the planar case MWAP in undirected unweighted networks have appeared to be a root problem among considered problems. During investigation of properties of circles in networks it was shown that the difference between planar and network circles is significant. This leads to the nonequivalence of CLP and MWAP in the general case. However, MWAP was effectively used in solution procedures for CLP giving the sequence MWAP-->CLP. The complexity of the developed and implemented algorithm is of order O(m^2n^2). It is important to mention that CLP in networks has been formulated for the first time in this work and differs from the well–studied location of cycles in networks. We have constructed an O(mn+n^2logn) algorithm for well–known PLP. The complexity of this algorithm is not worse than the complexity of the currently best algorithms. But the concept of the solution procedure is new – we use MWAP in order to solve PLP building the opposite to the planar case solution sequence MWAP-->PLP and this method has the following advantages: First, the lower bounds LB obtained in the solution procedure are proved to be in any case better than the strongest Halpern’s lower bound. Second, the developed algorithm is so simple that it can be easily applied to complex networks manually. Third, the empirical complexity of the algorithm is equal to O(mn). MWAP was extended to and explored in directed unweighted and weighted networks. The complexity bound O(n^2) of the developed algorithm for finding of the center of a minimum width annulus in the unweighted case does not depend on the number of edges in a network, because the problems can be solved in the order PLP-->MWAP. In the weighted case computational time is of order O(mn^2).

In this dissertation we consider mesoscale based models for flow driven fibre orientation dynamics in suspensions. Models for fibre orientation dynamics are derived for two classes of suspensions. For concentrated suspensions of rigid fibres the Folgar-Tucker model is generalized by incorporating the excluded volume effect. For dilute semi-flexible fibre suspensions a novel moments based description of fibre orientation state is introduced and a model for the flow-driven evolution of the corresponding variables is derived together with several closure approximations. The equation system describing fibre suspension flows, consisting of the incompressible Navier-Stokes equation with an orientation state dependent non-Newtonian constitutive relation and a linear first order hyperbolic system for the fibre orientation variables, has been analyzed, allowing rather general fibre orientation evolution models and constitutive relations. The existence and uniqueness of a solution has been demonstrated locally in time for sufficiently small data. The closure relations for the semiflexible fibre suspension model are studied numerically. A finite volume based discretization of the suspension flow is given and the numerical results for several two and three dimensional domains with different parameter values are presented and discussed.

This thesis covers two important fields in financial mathematics, namely the continuous time portfolio optimisation and credit risk modelling. We analyse optimisation problems of portfolios of Call and Put options on the stock and/or the zero coupon bond issued by a firm with default risk. We use the martingale approach for dynamic optimisation problems. Our findings show that the riskier the option gets, the less proportion of his wealth the investor allocates to the risky asset. Further, we analyse the Credit Default Swap (CDS) market quotes on the Eurobonds issued by Turkish sovereign for building the term structure of the sovereign credit risk. Two methods are introduced and compared for bootstrapping the risk-neutral probabilities of default (PD) in an intensity based (or reduced form) credit risk modelling approach. We compare the market-implied PDs with the actual PDs reported by credit rating agencies based on historical experience. Our results highlight the market price of the sovereign credit risk depending on the assigned rating category in the sampling period. Finally, we find an optimal leverage strategy for delivering the payments promised by a Constant Proportion Debt Obligation (CPDO). The problem is solved via the introduction and explicit solution of a stochastic control problem by transforming the related Hamilton-Jacobi-Bellman Equation into its dual. Contrary to the industry practise, the optimal leverage function we derive is a non-linear function of the CPDO asset value. The simulations show promising behaviour of the optimal leverage function compared with the one popular among practitioners.

This thesis deals with the following question. Given a moduli space of coherent sheaves on a projective variety with a fixed Hilbert polynomial, to find a natural construction that replaces the subvariety of the sheaves that are not locally free on their support (we call such sheaves singular) by some variety consisting of sheaves that are locally free on their support. We consider this problem on the example of the coherent sheaves on \(\mathbb P_2\) with Hilbert polynomial 3m+1.
Given a singular coherent sheaf \(\mathcal F\) with singular curve C as its support we replace \(\mathcal F\) by locally free sheaves \(\mathcal E\) supported on a reducible curve \(C_0\cup C_1\), where \(C_0\) is a partial normalization of C and \(C_1\) is an extra curve bearing the degree of \(\mathcal E\). These bundles resemble the bundles considered by Nagaraj and Seshadri. Many properties of the singular 3m+1 sheaves are inherited by the new sheaves we introduce in this thesis (we call them R-bundles). We consider R-bundles as natural replacements of the singular sheaves. R-bundles refine the information about 3m+1 sheaves on \(\mathbb P_2\). Namely, for every isomorphism class of singular 3m+1 sheaves there are \(\mathbb P_1\) many equivalence classes of R-bundles. There is a variety \(\tilde M\) of dimension 10 that may be considered as the space of all the isomorphism classes of the non-singular 3m+1 sheaves on \(\mathbb P_2\) together with all the equivalence classes of all R-bundles. This variety is obtained by blowing up the moduli space of 3m+1 sheaves on \(\mathbb P_2\) along the subvariety of singular sheaves. We modify the definition of a 3m+1 family and obtain a notion of a new family over an arbitrary variety S. In particular 3m+1 families of the non-singular sheaves on \(\mathbb P_2\) are families in this sense. New families over one point are either non-singular 3m+1 sheaves or R-bundles. For every variety S we introduce an equivalence relation on the set of all new families over S. The notion of equivalence for families over one point coincides with isomorphism for non-singular 3m+1 sheaves and with equivalence for R-bundles. We obtain a moduli functor \(\tilde{\mathcal M}:(Sch) \rightarrow (Sets)\) that assigns to every variety S the set of the equivalence classes of the new families over S. There is a natural transformation of functors \(\tilde{\mathcal M}\rightarrow \mathcal M\) that establishes a relation between \(\tilde{\mathcal M}\) and the moduli functor \(\mathcal M\) of the 3m+1 moduli problem on \(\mathbb P_2\). There is also a natural transformation \(\tilde{\mathcal M} \rightarrow Hom(\__ ,\tilde M)\), inducing a bijection \(\tilde{\mathcal M}(pt)\cong \tilde M\), which means that \(\tilde M\) is a coarse moduli space of the moduli problem \(\tilde{\mathcal M}\).

Diese Doktorarbeit befasst sich mit Volatilitätsarbitrage bei europäischen Kaufoptionen und mit der Modellierung von Collateralized Debt Obligations (CDOs). Zuerst wird anhand einer Idee von Carr gezeigt, dass es stochastische Arbitrage in einem Black-Scholes-ähnlichen Modell geben kann. Danach optimieren wir den Arbitrage- Gewinn mithilfe des Erwartungswert-Varianz-Ansatzes von Markowitz und der Martingaltheorie. Stochastische Arbitrage im stochastischen Volatilitätsmodell von Heston wird auch untersucht. Ferner stellen wir ein Markoff-Modell für CDOs vor. Wir zeigen dann, dass man relativ schnell an die Grenzen dieses Modells stößt: Nach dem Ausfall einer Firma steigen die Ausfallintensitäten der überlebenden Firmen an, und kehren nie wieder zu ihrem Ausgangsniveau zurück. Dieses Verhalten stimmt aber nicht mit Beobachtungen am Markt überein: Nach Turbulenzen auf dem Markt stabilisiert sich der Markt wieder und daher würde man erwarten, dass die Ausfallintensitäten der überlebenden Firmen ebenfalls wieder abflachen. Wir ersetzen daher das Markoff-Modell durch ein Semi-Markoff-Modell, das den Markt viel besser nachbildet.

Das zentrale Thema dieser Arbeit sind vollständig gekoppelte reflektierte Vorwärts-Rückwärts-Stochastische-Differentialgleichungen (FBSDE). Zunächst wird ein Spezialfall, die teilweise gekoppelten FBSDE, betrachtet und deren Verbindung zur Bewertung Amerikanischer Optionen aufgezeigt. Für die Lösung dieser Gleichung wird Monte-Carlo-Simulation benötigt, daher werden verschiedene Varianzreduktionsmaßnahmen erarbeitet und miteinander verglichen. Im Folgenden wird der allgemeinere Fall der vollständig gekoppelten reflektierten FBSDE behandelt. Es wird gezeigt, wie das Problem der Lösung dieser Gleichungen in ein Optimierungsproblem übertragen werden kann und infolgedessen mit numerischen Methoden aus diesem Bereich der Mathematik bearbeitet werden kann. Abschließend folgen Vergleiche der verschiedenen numerischen Ansätze mit bereits existierenden Verfahren.

Continuous stochastic control theory has found many applications in optimal investment. However, it lacks some reality, as it is based on the assumption that interventions are costless, which yields optimal strategies where the controller has to intervene at every time instant. This thesis consists of the examination of two types of more realistic control methods with possible applications. In the first chapter, we study the stochastic impulse control of a diffusion process. We suppose that the controller minimizes expected discounted costs accumulating as running and controlling cost, respectively. Each control action causes costs which are bounded from below by some positive constant. This makes a continuous control impossible as it would lead to an immediate ruin of the controller. We give a rigorous development of the relevant theory, where our guideline is to establish verification and convergence results under minimal assumptions, without focusing on the existence of solutions to the corresponding (quasi-)variational inequalities. If the impulse control problem can be characterized or approximated by (quasi-)variational inequalities, it remains to solve these equations. In Section 1.2, we solve the stochastic impulse control problem for a one-dimensional diffusion process with constant coefficients and convex running costs. Further, in Section 1.3, we solve a particular multi-dimensional example, where the uncontrolled process is given by an at least two-dimensional Brownian motion and the cost functions are rotationally symmetric. By symmetry, this problem can be reduced to a one-dimensional problem. In the last section of the first chapter, we suggest a new impulse control problem, where the controller is in addition allowed to invest his initial capital into a market consisting of a money market account and a risky asset. The costs which arise upon controlling the diffusion process and upon trading in this market have to be paid out of the controller's bond holdings. The aim of the controller is to minimize the running costs, caused by the abstract diffusion process, without getting ruined. The second chapter is based on a paper which is joint work with Holger Kraft and Frank Seifried. We analyze the portfolio decision of an investor trading in a market where the economy switches randomly between two possible states, a normal state where trading takes place continuously, and an illiquidity state where trading is not allowed at all. We allow for jumps in the market prices at the beginning and at the end of a trading interruption. Section 2.1 provides an explicit representation of the investor's portfolio dynamics in the illiquidity state in an abstract market consisting of two assets. In Section 2.2 we specify this market model and assume that the investor maximizes expected utility from terminal wealth. We establish convergence results, if the maximal number of liquidity breakdowns goes to infinity. In the Markovian framework of Section 2.3, we provide the corresponding Hamilton-Jacobi-Bellman equations and prove a verification result. We apply these results to study the portfolio problem for a logarithmic investor and an investor with a power utility function, respectively. Further, we extend this model to an economy with three regimes. For instance, the third state could model an additional financial crisis where trading is still possible, but the excess return is lower and the volatility is higher than in the normal state.

This thesis is devoted to applying symbolic methods to the problems of decoding linear codes and of algebraic cryptanalysis. The paradigm we employ here is as follows. We reformulate the initial problem in terms of systems of polynomial equations over a finite field. The solution(s) of such systems should yield a way to solve the initial problem. Our main tools for handling polynomials and polynomial systems in such a paradigm is the technique of Gröbner bases and normal form reductions. The first part of the thesis is devoted to formulating and solving specific polynomial systems that reduce the problem of decoding linear codes to the problem of polynomial system solving. We analyze the existing methods (mainly for the cyclic codes) and propose an original method for arbitrary linear codes that in some sense generalizes the Newton identities method widely known for cyclic codes. We investigate the structure of the underlying ideals and show how one can solve the decoding problem - both the so-called bounded decoding and more general nearest codeword decoding - by finding reduced Gröbner bases of these ideals. The main feature of the method is that unlike usual methods based on Gröbner bases for "finite field" situations, we do not add the so-called field equations. This tremendously simplifies the underlying ideals, thus making feasible working with quite large parameters of codes. Further we address complexity issues, by giving some insight to the Macaulay matrix of the underlying systems. By making a series of assumptions we are able to provide an upper bound for the complexity coefficient of our method. We address also finding the minimum distance and the weight distribution. We provide solid experimental material and comparisons with some of the existing methods in this area. In the second part we deal with the algebraic cryptanalysis of block iterative ciphers. Namely, we analyze the small-scale variants of the Advanced Encryption Standard (AES), which is a widely used modern block cipher. Here a cryptanalyst composes the polynomial systems which solutions should yield a secret key used by communicating parties in a symmetric cryptosystem. We analyze the systems formulated by researchers for the algebraic cryptanalysis, and identify the problem that conventional systems have many auxiliary variables that are not actually needed for the key recovery. Moreover, having many such auxiliary variables, specific to a given plaintext/ciphertext pair, complicates the use of several pairs which is common in cryptanalysis. We thus provide a new system where the auxiliary variables are eliminated via normal form reductions. The resulting system in key-variables only is then solved. We present experimental evidence that such an approach is quite good for small scaled ciphers. We investigate further our approach and employ the so-called meet-in-the-middle principle to see how far one can go in analyzing just 2-3 rounds of scaled ciphers. Additional "tuning techniques" are discussed together with experimental material. Overall, we believe that the material of this part of the thesis makes a step further in algebraic cryptanalysis of block ciphers.

This dissertation deals with two main subjects. Both are strongly related to boundary problems for the Poisson equation and the Laplace equation, respectively. The oblique boundary problem of potential theory as well as the limit formulae and jump relations of potential theory are investigated. We divide this abstract into two parts and start with the oblique boundary problem. Here we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in my diploma thesis. Moreover we prove regularization results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkin approximation. Finally we show that the results are applicable to problems from Geomathematics. Now we come to the limit formulae. There we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. The convergence in Lebesgue spaces for integrable functions is already treated in literature. The achievement of this dissertation is this convergence for the weak derivatives of higher orders. Also the layer functions are elements of Sobolev spaces and the surface is a two dimensional suitable smooth submanifold in the three dimensional space. We are considering the potential of the single layer, the potential of the double layer and their first order normal derivatives. Main tool in the proof in Sobolev norm is the uniform convergence of the tangential derivatives, which is proved with help of some results taken from literature. Additionally, we need a result about the limit formulae in the Lebesgue spaces, which is also taken from literature, and a reduction result for normal derivatives of harmonic functions. Moreover we prove the convergence in the Hölder spaces. Finally we give an application of the limit formulae and jump relations. We generalize a known density of several function systems from Geomathematics in the Lebesgue spaces of square integrable measureable functions, to density in Sobolev spaces, based on the results proved before. Therefore we have prove the limit formula of the single layer potential in dual spaces of Soboelv spaces, where also the layer function is an element of such a distribution space.

This study deals with the optimal control problems of the glass tube drawing processes where the aim is to control the cross-sectional area (circular) of the tube by using the adjoint variable approach. The process of tube drawing is modeled by four coupled nonlinear partial differential equations. These equations are derived by the axisymmetric Stokes equations and the energy equation by using the approach based on asymptotic expansions with inverse aspect ratio as small parameter. Existence and uniqueness of the solutions of stationary isothermal model is also proved. By defining the cost functional, we formulated the optimal control problem. Then Lagrange functional associated with minimization problem is introduced and the first and the second order optimality conditions are derived. We also proved the existence and uniqueness of the solutions of the stationary isothermal model. We implemented the optimization algorithms based on the steepest descent, nonlinear conjugate gradient, BFGS, and Newton approaches. In the Newton method, CG iterations are introduced to solve the Newton equation. Numerical results are obtained for two different cases. In the first case, the cross-sectional area for the entire time domain is controlled and in the second case, the area at the final time is controlled. We also compared the performance of the optimization algorithms in terms of the solution iterations, functional evaluations and the computation time.

In the context of inverse optimization, inverse versions of maximum flow and minimum cost flow problems have thoroughly been investigated. In these network flow problems there are two important problem parameters: flow capacities of the arcs and costs incurred by sending a unit flow on these arcs. Capacity changes for maximum flow problems and cost changes for minimum cost flow problems have been studied under several distance measures such as rectilinear, Chebyshev, and Hamming distances. This thesis also deals with inverse network flow problems and their counterparts tension problems under the aforementioned distance measures. The major goals are to enrich the inverse optimization theory by introducing new inverse network problems that have not yet been treated in the literature, and to extend the well-known combinatorial results of inverse network flows for more general classes of problems with inherent combinatorial properties such as matroid flows on regular matroids and monotropic programming. To accomplish the first objective, the inverse maximum flow problem under Chebyshev norm is analyzed and the capacity inverse minimum cost flow problem, in which only arc capacities are perturbed, is introduced. In this way, it is attempted to close the gap between the capacity perturbing inverse network problems and the cost perturbing ones. The foremost purpose of studying inverse tension problems on networks is to achieve a well-established generalization of the inverse network problems. Since tensions are duals of network flows, carrying the theoretical results of network flows over to tensions follows quite intuitively. Using this intuitive link between network flows and tensions, a generalization to matroid flows and monotropic programs is built gradually up.

The goal of this work is the development and investigation of an interdisciplinary and in itself closed hydrodynamic approach to the simulation of dilute and dense granular flow. The definition of “granular flow” is a nontrivial task in itself. We say that it is either the flow of grains in a vacuum or in a fluid. A grain is an observable piece of a certain material, for example stone when we mean the flow of sand. Choosing a hydrodynamic view on granular flow, we treat the granular material as a fluid. A hydrodynamic model is developed, that describes the process of flowing granular material. This is done through a system of partial differential equations and algebraic relations. This system is derived by the kinetic theory of granular gases which is characterized by inelastic collisions extended with approaches from soil mechanics. Solutions to the system have to be obtained to understand the process. The equations are so difficult to solve that an analytical solution is out of reach. So approximate solutions must be obtained. Hence the next step is the choice or development of a numerical algorithm to obtain approximate solutions of the model. Common to every problem in numerical simulation, these two steps do not lead to a result without implementation of the algorithm. Hence the author attempts to present this work in the following frame, to participate in and contribute to the three areas Physics, Mathematics and Software implementation and approach the simulation of granular flow in a combined and interdisciplinary way. This work is structured as follows. A continuum model for granular flow which covers the regime of fast dilute flow as well as slow dense flow up to vanishing velocity is presented in the first chapter. This model is strongly nonlinear in the dependence of viscosity and other coefficients on the hydrodynamic variables and it is singular because some coefficients diverge towards the maximum packing fraction of grains. Hence the second difficulty, the challenging task of numerically obtaining approximate solutions for this model is faced in the second chapter. In the third chapter we aim at the validation of both the model and the numerical algorithm through numerical experiments and investigations and show their application to industrial problems. There we focus intensively on the shear flow experiment from the experimental and analytical work of Bocquet et al. which serves well to demonstrate the algorithm, all boundary conditions involved and provides a setting for analytical studies to compare our results. The fourth chapter rounds up the work with the implementation of both the model and the numerical algorithm in a software framework for the solution of complex rheology problems developed as part of this thesis.

This thesis deals with the application of binomial option pricing in a single-asset Black-Scholes market and its extension to multi-dimensional situations. Although the binomial approach is, in principle, an efficient method for lower dimensional valuation problems, there are at least two main problems regarding its application: Firstly, traded options often exhibit discontinuities, so that the Berry- Esséen inequality is in general tight; i.e. conventional tree methods converge no faster than with order 1/sqrt(N). Furthermore, they suffer from an irregular convergence behaviour that impedes the possibility to achieve a higher order of convergence via extrapolation methods. Secondly, in multi-asset markets conventional tree construction methods cannot ensure well-defined transition probabilities for arbitrary correlation structures between the assets. As a major aim of this thesis, we present two approaches to get binomial trees into shape in order to overcome the main problems in applications; the optimal drift model for the valuation of single-asset options and the decoupling approach to multi-dimensional option pricing. The new valuation methods are embedded into a self-contained survey of binomial option pricing, which focuses on the convergence behaviour of binomial trees. The optimal drift model is a new one-dimensional binomial scheme that can lead to convergence of order o(1/N) by exploiting the specific structure of the valuation problem under consideration. As a consequence, it has the potential to outperform benchmark algorithms. The decoupling approach is presented as a universal construction method for multi-dimensional trees. The corresponding trees are well-defined for an arbitrary correlation structure of the underlying assets. In addition, they yield a more regular convergence behaviour. In fact, the sawtooth effect can even vanish completely, so that extrapolation can be applied.