## Fachbereich Mathematik

This thesis deals with modeling aspects of generalized Newtonian and of non-Newtonian fluids, as well as with development and validation of algorithms used in simulation of such fluids. The main contribution in the modeling part are the introduction and analysis of a new model for the generalized Newtonian fluids, where constitutive equation is of an algebraic form. Distinction between shear and extensional viscosities leads to anisotropic viscosity model. It can be considered as a natural extension of the well known (isotropic viscosity) Carreau model, which deals only with shear viscosity properties of the fluid. The proposed model takes additionally into account extensional viscosity properties. Numerical results show that the anisotropic viscosity model gives much better agreement with experimental observations than the isotropic one. Another contribution of the thesis consists of the development and analysis of robust and reliable algorithms for simulation of generalized Newtonian fluids. For such fluids the momentum equations are strongly coupled through mixed derivatives appearing in the viscous term (unlike the case of Newtonian fluids). It is shown in this thesis, that a careful treatment of those derivatives is essential in deriving robust algorithms. A modification of a standard SIMPLE-like algorithm is given, where all the viscous terms from the momentum equations are discretized in an implicit manner. Moreover, it is shown that a block diagonal preconditioner to the viscous operator is good enough to be used in simulations. Furthermore, different solution techniques, namely projection type methods (consists of solving momentum equations and pressure correction equation) and fully coupled methods (momentum and continuity equations are solved together), are compared. It is shown, that explicit discretization of the mixed derivatives lead to stability problems. Further, analytical estimates of eigenvalue distribution for three different preconditioners, applied to the transformed system arising after discretization and linearization of the momentum and continuity equations, are provided. We propose to apply a block Gauss-Seidel preconditioner to the transformed system. The analysis shows, that this preconditioner is able to cluster eigenvalues around unity independent of the transformation step. It is not the case for other preconditioners applied to the transformed system as discussed in the thesis. The block Gauss-Seidel preconditioner has also shown the best behavior (among all preconditioners discussed in the thesis) in numerical experiments. Further contribution consists of comparison and validation of numerical algorithms applied in simulations of non-Newtonian fluids modeled by time integral constitutive equations. Numerical results from simulations of dilute polymer solutions, described by the integral Oldroyd B model, have shown very good quantitative agreement with the results obtained by differential Oldroyd B counterpart in 4:1 planar contraction domain at low Weissenberg numbers. In this case, the Weissenberg number is changed by changing the relaxation time. However, contrary to the differential Oldroyd B model, the integral one allows to perform stable simulations also in the range of high Weissenberg numbers. Moreover, very good agreement with experimental observations has been achieved. Simulations of concentrated polymer solutions (polystyrene and polybutadiene solutions), modeled by the integral Doi Edwards model, supplemented by chain length fluctuations, have shown very good qualitative agreement with the results obtained by its differential approximation in 4:1:4 constriction domain. Again, much higher Weissenberg numbers can be achieved when the integral model is used. Moreover, very good quantitative results with experimental data of polystyrene solution for the first normal stress difference and shear viscosity defined here as the quotient of a shear stress and a shear rate. Finally, comparison of the two methods used for approximating the time integral constitutive equation, namely Deformation Field Method (DFM) and Backward Lagrangian Particle Method (BLPM), is performed. In BLPM the particle paths are recalculated at every time step of the simulations, what has never been tried before. The results have shown, that in the considered geometries both methods give similar results.

The goal of this work is the development and investigation of an interdisciplinary and in itself closed hydrodynamic approach to the simulation of dilute and dense granular flow. The definition of “granular flow” is a nontrivial task in itself. We say that it is either the flow of grains in a vacuum or in a fluid. A grain is an observable piece of a certain material, for example stone when we mean the flow of sand. Choosing a hydrodynamic view on granular flow, we treat the granular material as a fluid. A hydrodynamic model is developed, that describes the process of flowing granular material. This is done through a system of partial differential equations and algebraic relations. This system is derived by the kinetic theory of granular gases which is characterized by inelastic collisions extended with approaches from soil mechanics. Solutions to the system have to be obtained to understand the process. The equations are so difficult to solve that an analytical solution is out of reach. So approximate solutions must be obtained. Hence the next step is the choice or development of a numerical algorithm to obtain approximate solutions of the model. Common to every problem in numerical simulation, these two steps do not lead to a result without implementation of the algorithm. Hence the author attempts to present this work in the following frame, to participate in and contribute to the three areas Physics, Mathematics and Software implementation and approach the simulation of granular flow in a combined and interdisciplinary way. This work is structured as follows. A continuum model for granular flow which covers the regime of fast dilute flow as well as slow dense flow up to vanishing velocity is presented in the first chapter. This model is strongly nonlinear in the dependence of viscosity and other coefficients on the hydrodynamic variables and it is singular because some coefficients diverge towards the maximum packing fraction of grains. Hence the second difficulty, the challenging task of numerically obtaining approximate solutions for this model is faced in the second chapter. In the third chapter we aim at the validation of both the model and the numerical algorithm through numerical experiments and investigations and show their application to industrial problems. There we focus intensively on the shear flow experiment from the experimental and analytical work of Bocquet et al. which serves well to demonstrate the algorithm, all boundary conditions involved and provides a setting for analytical studies to compare our results. The fourth chapter rounds up the work with the implementation of both the model and the numerical algorithm in a software framework for the solution of complex rheology problems developed as part of this thesis.

The present thesis deals with coupled steady state laminar flows of isothermal incompressible viscous Newtonian fluids in plain and in porous media. The flow in the pure fluid region is usually described by the (Navier-)Stokes system of equations. The most popular models for the flow in the porous media are those suggested by Darcy and by Brinkman. Interface conditions, proposed in the mathematical literature for coupling Darcy and Navier-Stokes equations, are shortly reviewed in the thesis. The coupling of Navier-Stokes and Brinkman equations in the literature is based on the so called continuous stress tensor interface conditions. One of the main tasks of this thesis is to investigate another type of interface conditions, namely, the recently suggested stress tensor jump interface conditions. The mathematical models based on these interface conditions were not carefully investigated from the mathematical point of view, and also their validity was a subject of discussions. The considerations within this thesis are a step toward better understanding of these interface conditions. Several aspects of the numerical simulations of such coupled flows are considered: -the choice of proper interface conditions between the plain and porous media -analysis of the well-posedness of the arising systems of partial differential equations; -developing numerical algorithm for the stress tensor jump interface conditions, coupling Navier-Stokes equations in the pure liquid media with the Navier-Stokes-Brinkman equations in the porous media; -validation of the macroscale mathematical models on the base of a comparison with the results from a direct numerical simulation of model representative problems, allowing for grid resolution of the pore level geometry; -developing software and performing numerical simulation of 3-D industrial flows, namely of oil flows through car filters.