## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 2007 (34) (entfernen)

#### Dokumenttyp

- Dissertation (14)
- Preprint (14)
- Diplomarbeit (3)
- Bericht (3)

#### Schlagworte

- Elastoplastizität (2)
- Mixture Models (2)
- Optionspreistheorie (2)
- Sobolev spaces (2)
- Spline-Approximation (2)
- localizing basis (2)
- 2-d kernel regression (1)
- A-infinity-bimodule (1)
- A-infinity-category (1)
- A-infinity-functor (1)

- A condition that a continuously deformed, simply connected body does not penetrate itself (2007)
- In this article we give a sufficient condition that a simply connected flexible body does not penetrate itself, if it is subjected to a continuous deformation. It is shown that the deformation map is automatically injective, if it is just locally injective and injective on the boundary of the body. Thereby, it is very remarkable that no higher regularity assumption than continuity for the deformation map is required. The proof exclusively relies on homotopy methods and the Jordan-Brouwer separation theorem.

- A note on the identifiability of the conditional expectation for the mixtures of neural networks (2007)
- We consider a generalized mixture of nonlinear AR models, a hidden Markov model for which the autoregressive functions are single layer feedforward neural networks. The non trivial problem of identifiability, which is usually postulated for hidden Markov models, is addressed here.

- A piecewise analytical solution for Jiangs model of elastoplasticity (2007)
- In this article, we present an analytic solution for Jiang's constitutive model of elastoplasticity. It is considered in its stress controlled form for proportional stress loading under the assumptions that the one-to-one coupling of the yield surface radius and the memory surface radius is switched off, that the transient hardening is neglected and that the ratchetting exponents are constant.

- A-infinity-bimodules and Serre A-infinity-functors (2007)
- This dissertation is intended to transport the theory of Serre functors into the context of A-infinity-categories. We begin with an introduction to multicategories and closed multicategories, which form a framework in which the theory of A-infinity-categories is developed. We prove that (unital) A-infinity-categories constitute a closed symmetric multicategory. We define the notion of A-infinity-bimodule similarly to Tradler and show that it is equivalent to an A-infinity-functor of two arguments which takes values in the differential graded category of complexes of k-modules, where k is a commutative ground ring. Serre A-infinity-functors are defined via A-infinity-bimodules following ideas of Kontsevich and Soibelman. We prove that a unital closed under shifts A-infinity-category over a field admits a Serre A-infinity-functor if and only if its homotopy category admits an ordinary Serre functor. The proof uses categories and Serre functors enriched in the homotopy category of complexes of k-modules. Another important ingredient is an A-infinity-version of the Yoneda Lemma.

- Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure interaction problems (2007)
- The lattice Boltzmann method (LBM) is a numerical solver for the Navier-Stokes equations, based on an underlying molecular dynamic model. Recently, it has been extended towardsthe simulation of complex fluids. We use the asymptotic expansion technique to investigate the standard scheme, the initialization problem and possible developments towards moving boundary and fluid-structure interaction problems. At the same time, it will be shown how the mathematical analysis can be used to understand and improve the algorithm. First of all, we elaborate the tool "asymptotic analysis", proposing a general formulation of the technique and explaining the methods and the strategy we use for the investigation. A first standard application to the LBM is described, which leads to the approximation of the Navier-Stokes solution starting from the lattice Boltzmann equation. As next, we extend the analysis to investigate origin and dynamics of initial layers. A class of initialization algorithms to generate accurate initial values within the LB framework is described in detail. Starting from existing routines, we will be able to improve the schemes in term of efficiency and accuracy. Then we study the features of a simple moving boundary LBM. In particular, we concentrate on the initialization of new fluid nodes created by the variations of the computational fluid domain. An overview of existing possible choices is presented. Performing a careful analysis of the problem we propose a modified algorithm, which produces satisfactory results. Finally, to set up an LBM for fluid structure interaction, efficient routines to evaluate forces are required. We describe the Momentum Exchange algorithm (MEA). Precise accuracy estimates are derived, and the analysis leads to the construction of an improved method to evaluate the interface stresses. In conclusion, we test the defined code and validate the results of the analysis on several simple benchmarks. From the theoretical point of view, in the thesis we have developed a general formulation of the asymptotic expansion, which is expected to offer a more flexible tool in the investigation of numerical methods. The main practical contribution offered by this work is the detailed analysis of the numerical method. It allows to understand and improve the algorithms, and construct new routines, which can be considered as starting points for future researches.

- Capacity Inverse Minimum Cost Flow Problem (2007)
- Given a directed graph G = (N,A) with arc capacities u and a minimum cost flow problem defined on G, the capacity inverse minimum cost flow problem is to find a new capacity vector u' for the arc set A such that a given feasible flow x' is optimal with respect to the modified capacities. Among all capacity vectors u' satisfying this condition, we would like to find one with minimum ||u' - u|| value. We consider two distance measures for ||u' - u||, rectilinear and Chebyshev distances. By reduction from the feedback arc set problem we show that the capacity inverse minimum cost flow problem is NP-hard in the rectilinear case. On the other hand, it is polynomially solvable by a greedy algorithm for the Chebyshev norm. In the latter case we propose a heuristic for the bicriteria problem, where we minimize among all optimal solutions the number of affected arcs. We also present computational results for this heuristic.

- Convergent Finite Element Discretizations of the Density Gradient Equation for Quantum Semiconductors (2007)
- We study nonlinear finite element discretizations for the density gradient equation in the quantum drift diffusion model. Especially, we give a finite element description of the so--called nonlinear scheme introduced by {it Ancona}. We prove the existence of discrete solutions and provide a consistency and convergence analysis, which yields the optimal order of convergence for both discretizations. The performance of both schemes is compared numerically, especially with respect to the influence of approximate vacuum boundary conditions.

- Efficient numerical methods for the Biot poroelasticity system in multilayered domains (2007)
- In this thesis, the quasi-static Biot poroelasticity system in bounded multilayered domains in one and three dimensions is studied. In more detail, in the one-dimensional case, a finite volume discretization for the Biot system with discontinuous coefficients is derived. The discretization results in a difference scheme with harmonic averaging of the coefficients. Detailed theoretical analysis of the obtained discrete model is performed. Error estimates, which establish convergence rates for both primary as well as flux unknowns are derived. Besides, modified and more accurate discretizations, which can be applied when the interface position coincides with a grid node, are obtained. These discretizations yield second order convergence of the fluxes of the problem. Finally, the solver for the solution of the produced system of linear equations is developed and extensively tested. A number of numerical experiments, which confirm the theoretical considerations are performed. In the three-dimensional case, the finite volume discretization of the system involves construction of special interpolating polynomials in the dual volumes. These polynomials are derived so that they satisfy the same continuity conditions across the interface, as the original system of PDEs. This technique allows to obtain such a difference scheme, which provides accurate computation of the primary as well as of the flux unknowns, including the points adjacent to the interface. Numerical experiments, based on the obtained discretization, show second order convergence for auxiliary problems with known analytical solutions. A multigrid solver, which incorporates the features of the discrete model, is developed in order to solve efficiently the linear system, produced by the finite volume discretization of the three-dimensional problem. The crucial point is to derive problem-dependent restriction and prolongation operators. Such operators are a well-known remedy for the scalar PDEs with discontinuous coefficients. Here, these operators are derived for the system of PDEs, taking into account interdependence of different unknowns within the system. In the derivation, the interpolating polynomials from the finite volume discretization are employed again, linking thus the discretization and the solution processes. The developed multigrid solver is tested on several model problems. Numerical experiments show that, due to the proper problem-dependent intergrid transfer, the multigrid solver is robust with respect to the discontinuities of the coefficients of the system. In the end, the poroelasticity system with discontinuous coefficients is used to model a real problem. The Biot model, describing this problem, is treated numerically, i.e., discretized by the developed finite volume techniques and then solved by the constructed multigrid solver. Physical characteristics of the process, such as displacement of the skeleton, pressure of the fluid, components of the stress tensor, are calculated and then presented at certain cross-sections.

- Fast Wavelet Transform by Biorthogonal Locally Supported Radial Basis Functions on Fixed Spherical Grids (2007)
- The thesis is concerned with multiscale approximation by means of radial basis functions on hierarchically structured spherical grids. A new approach is proposed to construct a biorthogonal system of locally supported zonal functions. By use of this biorthogonal system of locally supported zonal functions, a spherical fast wavelet transform (SFWT) is established. Finally, based on the wavelet analysis, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators are shown to be efficiently and economically solvable.

- Four Generations of Asset Pricing Models and Volatility Dynamics (2007)
- The scope of this diploma thesis is to examine the four generations of asset pricing models and the corresponding volatility dynamics which have been devepoled so far. We proceed as follows: In chapter 1 we give a short repetition of the Black-Scholes first generation model which assumes a constant volatility and we show that volatility should not be modeled as constant by examining statistical data and introducing the notion of implied volatility. In chapter 2, we examine the simplest models that are able to produce smiles or skews - local volatility models. These are called second generation models. Local volatility models model the volatility as a function of the stock price and time. We start with the work of Dupire, show how local volatility models can be calibrated and end with a detailed discussion of the constant elasticity of volatility model. Chapter 3 focuses on the Heston model which represents the class of the stochastic volatility models, which assume that the volatility itself is driven by a stochastic process. These are called third generation models. We introduce the model structure, derive a partial differential pricing equation, give a closed-form solution for European calls by solving this equation and explain how the model is calibrated. The last part of chapter 3 then deals with the limits and the mis-specifications of the Heston model, in particular for recent exotic options like reverse cliquets, Accumulators or Napoleons. In chapter 4 we then introduce the Bergomi forward variance model which is called fourth generation model as a consequence of the limits of the Heston model explained in chapter 3. The Bergomi model is a stochastic local volatility model - the spot price is modeled as a constant elasticity of volatility diffusion and its volatility parameters are functions of the so called forward variances which are specified as stochastic processes. We start with the model specification, derive a partial differential pricing equation, show how the model has to be calibrated and end with pricing examples and a concluding discussion.