## Fachbereich Mathematik

- Optimization of Beam Orientation in Intensity Modulated Radiation Therapy Planning (2006)
- For the last decade, optimization of beam orientations in intensity-modulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity profiles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity profiles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity profiles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity profiles for every selection of beam orientations, making the dependence between beam orientations and its intensity profiles less important. This thesis takes advantage of this property to accelerate the optimization process through an approximation of the intensity profiles that are used for multiple selections of beam orientations, saving a considerable amount of calculation time. A dynamic algorithm (DA) and evolutionary algorithm (EA), for beam orientations in IMRT planning will be presented. The DA mimics, automatically, the methods of beam's eye view and observer's view which are recognized in conventional conformal radiation therapy. The EA is based on a dose-volume histogram evaluation function introduced as an attempt to minimize the deviation between the mathematical and clinical optima. To illustrate the efficiency of the algorithms they have been applied to different clinical examples. In comparison to the standard equally spaced beams plans, improvements are reported for both algorithms in all the clinical examples even when, for some cases, fewer beams are used. A smaller number of beams is always desirable without compromising the quality of the treatment plan. It results in a shorter treatment delivery time, which reduces potential errors in terms of patient movements and decreases discomfort.

- Optimization and Control of Traffic Flow Networks (2006)
- Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.