## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 2006 (31) (entfernen)

#### Dokumenttyp

- Dissertation (13)
- Preprint (13)
- Bericht (3)
- Diplomarbeit (2)

#### Schlagworte

- Elastic BVP (2)
- Elastisches RWP (2)
- Elastoplastisches RWP (2)
- Hysterese (2)
- IMRT (2)
- Multivariate Approximation (2)
- Optimization (2)
- Sphäre (2)
- Spline (2)
- approximate identity (2)

- Locally Supported Approximate Identities on the Unit Ball (2006)
- We present a constructive theory for locally supported approximate identities on the unit ball in \(\mathbb{R}^3\). The uniform convergence of the convolutions of the derived kernels with an arbitrary continuous function \(f\) to \(f\), i.e. the defining property of an approximate identity, is proved. Moreover, an explicit representation for a class of such kernels is given. The original publication is available at www.springerlink.com

- Fast Approximation on the 2-Sphere by Optimally Localized Approximate Identities (2006)
- We introduce a method to construct approximate identities on the 2-sphere which have an optimal localization. This approach can be used to accelerate the calculations of approximations on the 2-sphere essentially with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function which can be chosen under some constraints. For each choice of weight function existence and uniqueness of the optimal kernel are proved as well as the generation of an approximate identity in the bandlimited case. Moreover, the optimally localizing approximate identity for a certain weight function is calculated and numerically tested.

- The Dynamics of Viscous Fibers (2006)
- This work deals with the mathematical modeling and numerical simulation of the dynamics of a curved inertial viscous Newtonian fiber, which is practically applicable to the description of centrifugal spinning processes of glass wool. Neglecting surface tension and temperature dependence, the fiber flow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the fiber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional fiber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. For the numerical simulation of the derived model a finite volume code is developed. The results of the numerical scheme for high Reynolds numbers are validated by comparing them with the analytical solution of the inviscid problem. Moreover, the influence of parameters, like viscosity and rotation on the fiber dynamics are investigated. Finally, an application based on industrial data is performed.

- Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives (2006)
- In StopLoc we consider the location of new stops along the edges of an existing public transportation network. Examples of StopLoc include the location of bus stops along some given bus routes or of railway stations along the tracks in a railway system. In order to measure the ''convenience'' of the location decision for potential customers in given demand facilities, two objectives are proposed. In the first one, we give an upper bound on reaching a closest station from any of the demand facilities and minimize the number of stations. In the second objective, we fix the number of new stations and minimize the sum of the distances between demand facilities and stations. The resulting two problems CovStopLoc and AccessStopLoc are solved by a reduction to a classical set covering and a restricted location problem, respectively. We implement the general ideas in two different environments - the plane, where demand facilities are represented by coordinates and in networks, where they are nodes of a graph.

- Model Reduction Techniques for Frequency Averaging in Radiative Heat Transfer (2006)
- We study model reduction techniques for frequency averaging in radiative heat transfer. Especially, we employ proper orthogonal decomposition in combination with the method of snapshots to devise an automated a posteriori algorithm, which helps to reduce significantly the dimensionality for further simulations. The reliability of the surrogate models is tested and we compare the results with two other reduced models, which are given by the approximation using the weighted sum of gray gases and by an frequency averaged version of the so-called \(\mathrm{SP}_n\) model. We present several numerical results underlining the feasibility of our approach.

- Hub Cover and Hub Center Problems (2006)
- Using covering problems (CoP) combined with binary search is a well-known and successful solution approach for solving continuous center problems. In this paper, we show that this is also true for center hub location problems in networks. We introduce and compare various formulations for hub covering problems (HCoP) and analyse the feasibility polyhedron of the most promising one. Computational results using benchmark instances are presented. These results show that the new solution approach performs better in most examples.

- Semi-Simultaneous Flows and Binary Constrained (Integer) Linear Programs (2006)
- Linear and integer programs are considered whose coefficient matrices can be partitioned into K consecutive ones matrices. Mimicking the special case of K=1 which is well-known to be equivalent to a network flow problem we show that these programs can be transformed to a generalized network flow problem which we call semi-simultaneous (se-sim) network flow problem. Feasibility conditions for se-sim flows are established and methods for finding initial feasible se-sim flows are derived. Optimal se-sim flows are characterized by a generalization of the negative cycle theorem for the minimum cost flow problem. The issue of improving a given flow is addressed both from a theoretical and practical point of view. The paper concludes with a summary and some suggestions for possible future work in this area.

- The enumeration of plane tropical curves (2006)
- Tropical geometry is a rather new field of algebraic geometry. The main idea is to replace algebraic varieties by certain piece-wise linear objects in R^n, which can be studied with the aid of combinatorics. There is hope that many algebraically difficult operations become easier in the tropical setting, as the structure of the objects seems to be simpler. In particular, tropical geometry shows promise for application in enumerative geometry. Enumerative geometry deals with the counting of geometric objects that are determined by certain incidence conditions. Until around 1990, not many enumerative questions had been answered and there was not much prospect of solving more. But then Kontsevich introduced the moduli space of stable maps which turned out to be a very useful concept for the study of enumerative geometry. A well-known problem of enumerative geometry is to determine the numbers N_cplx(d,g) of complex genus g plane curves of degree d passing through 3d+g-1 points in general position. Mikhalkin has defined the analogous number N_trop(d,g) for tropical curves and shown that these two numbers coincide (Mikhalkin's Correspondence Theorem). Tropical geometry supplies many new ideas and concepts that could be helpful to answer enumerative problems. However, as a rather new field, tropical geometry has to be studied more thoroughly. This thesis is concerned with the ``translation'' of well-known facts of enumerative geometry to tropical geometry. More precisely, the main results of this thesis are: - a tropical proof of the invariance of N_trop(d,g) of the position of the 3d+g-1 points, - a tropical proof for Kontsevich's recursive formula to compute N_trop(d,0) and - a tropical proof of Caporaso's and Harris' algorithm to compute N_trop(d,g). All results were derived in joint work with my advisor Andreas Gathmann. (Note that tropical research is not restricted to the translation of classically well-known facts, there are actually new results shown by means of tropical geometry that have not been known before. For example, Mikhalkin gave a tropical algorithm to compute the Welschinger invariant for real curves. This shows that tropical geometry can indeed be a tool for a better understanding of classical geometry.)

- Time-Dependent Cauchy-Navier Splines and their Application to Seismic Wave Front Propagation (2006)
- In this paper a known orthonormal system of time- and space-dependent functions, that were derived out of the Cauchy-Navier equation for elastodynamic phenomena, is used to construct reproducing kernel Hilbert spaces. After choosing one of the spaces the corresponding kernel is used to define a function system that serves as a basis for a spline space. We show that under certain conditions there exists a unique interpolating or approximating, respectively, spline in this space with respect to given samples of an unknown function. The name "spline" here refers to its property of minimising a norm among all interpolating functions. Moreover, a convergence theorem and an error estimate relative to the point grid density are derived. As numerical example we investigate the propagation of seismic waves.

- Optimization and Control of Traffic Flow Networks (2006)
- Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.