## Fachbereich Mathematik

### Refine

#### Year of publication

- 2006 (31) (remove)

#### Document Type

- Doctoral Thesis (13)
- Preprint (13)
- Report (3)
- Diploma Thesis (2)

#### Keywords

- Elastic BVP (2)
- Elastisches RWP (2)
- Elastoplastisches RWP (2)
- Hysterese (2)
- IMRT (2)
- Multivariate Approximation (2)
- Optimization (2)
- Sphäre (2)
- Spline (2)
- approximate identity (2)

- Coupling of different length scales in molecular dynamics simulations (2006)
- The topic of this thesis is the coupling of an atomistic and a coarse scale region in molecular dynamics simulations with the focus on the reflection of waves at the interface between the two scales and the velocity of waves in the coarse scale region for a non-equilibrium process. First, two models from the literature for such a coupling, the concurrent coupling of length scales and the bridging scales method are investigated for a one dimensional system with harmonic interaction. It turns out that the concurrent coupling of length scales method leads to the reflection of fine scale waves at the interface, while the bridging scales method gives an approximated system that is not energy conserving. The velocity of waves in the coarse scale region is in both models not correct. To circumvent this problems, we present a coupling based on the displacement splitting of the bridging scales method together with choosing appropriate variables in orthogonal subspaces. This coupling allows the derivation of evolution equations of fine and coarse scale degrees of freedom together with a reflectionless boundary condition at the interface directly from the Lagrangian of the system. This leads to an energy conserving approximated system with a clear separation between modeling errors an errors due to the numerical solution. Possible approximations in the Lagrangian and the numerical computation of the memory integral and other numerical errors are discussed. We further present a method to choose the interpolation from coarse to atomistic scale in such a way, that the fine scale degrees of freedom in the coarse scale region can be neglected. The interpolation weights are computed by comparing the dispersion relations of the coarse scale equations and the fully atomistic system. With this new interpolation weights, the number of degrees of freedom can be drastically reduced without creating an error in the velocity of the waves in the coarse scale region. We give an alternative derivation of the new coupling with the Mori-Zwanzig projection operator formalism, and explain how the method can be extended to non-zero temperature simulations. For the comparison of the results of the approximated with the fully atomistic system, we use a local stress tensor and the energy in the atomistic region. Examples for the numerical solution of the approximated system for harmonic potentials are given in one and two dimensions.

- Die McKay-Vermutung für quasi-einfache Gruppen vom Lie-Typ (2006)
- Die Arbeit beschäftigt sich mit den Charakteren des Normalisators und des Zentralisators eines Sylowtorus. Dabei wird jede Gruppe G vom Lie-Typ als Fixpunktgruppe einer einfach-zusammenhängenden einfachen Gruppe unter einer Frobeniusabbildung aufgefaßt. Für jeden Sylowtorus S der algebraischen Gruppe wird gezeigt, dass die irreduziblen Charaktere des Zentralisators von S in G sich auf ihre Trägheitsgruppe im Normalisator von S fortsetzen. Diese Fragestellung entsteht aus dem Studium der Höhe 0 Charaktere bei endlichen reduktiven Gruppen vom Lie-Typ im Zusammenhang mit der McKay-Vermutung. Neuere Resultate von Isaacs, Malle und Navarro führen diese Vermutung auf eine Eigenschaft von einfachen Gruppen zurück, die sie dann für eine Primzahl gut nennen. Bei Gruppen vom Lie-Typ zeigt das obige Resultat zusammen mit einer aktuellen Arbeit von Malle einige dabei wichtige und notwendige Eigenschaften. Anhand der Steinberg-Präsentation werden vor allem bei den klassischen Gruppen genauere Aussagen über die Struktur des Zentralisators und des Normalisators eines Sylowtorus bewiesen. Wichtig dabei ist die von Tits eingeführte erweiterte Weylgruppe, die starke Verbindungen zu Zopfgruppen besitzt. Das Resultat wird in zahlreichen Einzelfallbetrachtungen gezeigt, bei denen in dieser Arbeit bewiesene Vererbungsregeln von Fortsetzbarkeitseigenschaften benutzt werden.

- Optimization and Control of Traffic Flow Networks (2006)
- Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.

- Wavelet-based Adaptive Multiresolution Tools Applied to Speech Recognition (2006)
- * naive examples which show drawbacks of discrete wavelet transform and windowed Fourier transform; * adaptive partition (with a 'best basis' approach) of speech-like signals by means of local trigonometric bases with orthonormal windows. * extraction of formant-like features from the cosine transform; * further proceedingings for classification of vowels or voiced speech are suggested at the end.

- Quasiregular Projective Panes of Order 16 -- A Computational Approach (2006)
- This thesis discusses methods for the classification of finite projective planes via exhaustive search. In the main part the author classifies all projective planes of order 16 admitting a large quasiregular group of collineations. This is done by a complete search using the computer algebra system GAP. Computational methods for the construction of relative difference sets are discussed. These methods are implemented in a GAP-package, which is available separately. As another result --found in cooperation with U. Dempwolff-- the projective planes defined by planar monomials are classified. Furthermore the full automorphism group of the non-translation planes defined by planar monomials are classified.

- Statistical aspects of setting up a credit rating system (2006)
- The new international capital standard for credit institutions (“Basel II”) allows banks to use internal rating systems in order to determine the risk weights that are relevant for the calculation of capital charge. Therefore, it is necessary to develop a system that enfolds the main practices and methods existing in the context of credit rating. The aim of this thesis is to give a suggestion of setting up a credit rating system, where the main techniques used in practice are analyzed, presenting some alternatives and considering the problems that can arise from a statistical point of view. Finally, we will set up some guidelines on how to accomplish the challenge of credit scoring. The judgement of the quality of a credit with respect to the probability of default is called credit rating. A method based on a multi-dimensional criterion seems to be natural, due to the numerous effects that can influence this rating. However, owing to governmental rules, the tendency is that typically one-dimensional criteria will be required in the future as a measure for the credit worthiness or for the quality of a credit. The problem as described above can be resolved via transformation of a multi-dimensional data set into a one-dimensional one while keeping some monotonicity properties and also keeping the loss of information (due to the loss of dimensionality) at a minimum level.

- Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives (2006)
- In StopLoc we consider the location of new stops along the edges of an existing public transportation network. Examples of StopLoc include the location of bus stops along some given bus routes or of railway stations along the tracks in a railway system. In order to measure the ''convenience'' of the location decision for potential customers in given demand facilities, two objectives are proposed. In the first one, we give an upper bound on reaching a closest station from any of the demand facilities and minimize the number of stations. In the second objective, we fix the number of new stations and minimize the sum of the distances between demand facilities and stations. The resulting two problems CovStopLoc and AccessStopLoc are solved by a reduction to a classical set covering and a restricted location problem, respectively. We implement the general ideas in two different environments - the plane, where demand facilities are represented by coordinates and in networks, where they are nodes of a graph.

- Model Reduction Techniques for Frequency Averaging in Radiative Heat Transfer (2006)
- We study model reduction techniques for frequency averaging in radiative heat transfer. Especially, we employ proper orthogonal decomposition in combination with the method of snapshots to devise an automated a posteriori algorithm, which helps to reduce significantly the dimensionality for further simulations. The reliability of the surrogate models is tested and we compare the results with two other reduced models, which are given by the approximation using the weighted sum of gray gases and by an frequency averaged version of the so-called \(\mathrm{SP}_n\) model. We present several numerical results underlining the feasibility of our approach.

- The Dynamics of Viscous Fibers (2006)
- This work deals with the mathematical modeling and numerical simulation of the dynamics of a curved inertial viscous Newtonian fiber, which is practically applicable to the description of centrifugal spinning processes of glass wool. Neglecting surface tension and temperature dependence, the fiber flow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the fiber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional fiber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. For the numerical simulation of the derived model a finite volume code is developed. The results of the numerical scheme for high Reynolds numbers are validated by comparing them with the analytical solution of the inviscid problem. Moreover, the influence of parameters, like viscosity and rotation on the fiber dynamics are investigated. Finally, an application based on industrial data is performed.

- On numerical simulations of viscoelastic fluids. (2006)
- This thesis deals with modeling aspects of generalized Newtonian and of non-Newtonian fluids, as well as with development and validation of algorithms used in simulation of such fluids. The main contribution in the modeling part are the introduction and analysis of a new model for the generalized Newtonian fluids, where constitutive equation is of an algebraic form. Distinction between shear and extensional viscosities leads to anisotropic viscosity model. It can be considered as a natural extension of the well known (isotropic viscosity) Carreau model, which deals only with shear viscosity properties of the fluid. The proposed model takes additionally into account extensional viscosity properties. Numerical results show that the anisotropic viscosity model gives much better agreement with experimental observations than the isotropic one. Another contribution of the thesis consists of the development and analysis of robust and reliable algorithms for simulation of generalized Newtonian fluids. For such fluids the momentum equations are strongly coupled through mixed derivatives appearing in the viscous term (unlike the case of Newtonian fluids). It is shown in this thesis, that a careful treatment of those derivatives is essential in deriving robust algorithms. A modification of a standard SIMPLE-like algorithm is given, where all the viscous terms from the momentum equations are discretized in an implicit manner. Moreover, it is shown that a block diagonal preconditioner to the viscous operator is good enough to be used in simulations. Furthermore, different solution techniques, namely projection type methods (consists of solving momentum equations and pressure correction equation) and fully coupled methods (momentum and continuity equations are solved together), are compared. It is shown, that explicit discretization of the mixed derivatives lead to stability problems. Further, analytical estimates of eigenvalue distribution for three different preconditioners, applied to the transformed system arising after discretization and linearization of the momentum and continuity equations, are provided. We propose to apply a block Gauss-Seidel preconditioner to the transformed system. The analysis shows, that this preconditioner is able to cluster eigenvalues around unity independent of the transformation step. It is not the case for other preconditioners applied to the transformed system as discussed in the thesis. The block Gauss-Seidel preconditioner has also shown the best behavior (among all preconditioners discussed in the thesis) in numerical experiments. Further contribution consists of comparison and validation of numerical algorithms applied in simulations of non-Newtonian fluids modeled by time integral constitutive equations. Numerical results from simulations of dilute polymer solutions, described by the integral Oldroyd B model, have shown very good quantitative agreement with the results obtained by differential Oldroyd B counterpart in 4:1 planar contraction domain at low Weissenberg numbers. In this case, the Weissenberg number is changed by changing the relaxation time. However, contrary to the differential Oldroyd B model, the integral one allows to perform stable simulations also in the range of high Weissenberg numbers. Moreover, very good agreement with experimental observations has been achieved. Simulations of concentrated polymer solutions (polystyrene and polybutadiene solutions), modeled by the integral Doi Edwards model, supplemented by chain length fluctuations, have shown very good qualitative agreement with the results obtained by its differential approximation in 4:1:4 constriction domain. Again, much higher Weissenberg numbers can be achieved when the integral model is used. Moreover, very good quantitative results with experimental data of polystyrene solution for the first normal stress difference and shear viscosity defined here as the quotient of a shear stress and a shear rate. Finally, comparison of the two methods used for approximating the time integral constitutive equation, namely Deformation Field Method (DFM) and Backward Lagrangian Particle Method (BLPM), is performed. In BLPM the particle paths are recalculated at every time step of the simulations, what has never been tried before. The results have shown, that in the considered geometries both methods give similar results.