## Fachbereich Mathematik

### Refine

#### Year of publication

- 2003 (37) (remove)

#### Document Type

- Preprint (17)
- Doctoral Thesis (13)
- Report (5)
- Diploma Thesis (2)

#### Has Fulltext

- yes (37) (remove)

#### Keywords

- Lineare Algebra (4)
- Mathematikunterricht (4)
- Modellierung (4)
- linear algebra (4)
- modelling (4)
- praxisorientiert (4)
- Wavelet (3)
- mathematical education (3)
- Inverses Problem (2)
- Lineare Optimierung (2)

- Polyhedral Analysis of Hub Center Problems (2003)
- A hub location problem consists of locating p hubs in a network in order to collect and consolidate flow between node pairs. This thesis deals with the uncapacitated single allocation p-hub center problem (USApHCP) as a special type of hub location problem with min max objective function. Using the so-called radius formulation of the problem, the dimension of the polyhedron of USApHCP is derived. The formulation constraints are investigated to find out which of these define facets. Then, three new classes of facet-defining inequalities are derived. Finally, efficient procedures to separate facets in a branch-and-cut algorithm are proposed. The polyhedral analysis of USApHCP is based on a tight relation to the uncapacitated facility location problem (UFL). Hence, many results stated in this thesis also hold for UFL.

- Functions preserving 2-series strict orders (2003)
- In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class K of so-called 2-series strict orders we describe the partially ordered set EndK of endomorphism monoids, ordered by inclusion. It is obtained that EndK possesses a least element and in most cases defines a Boolean algebra. Moreover, every 2-series strict order is determined by its n-ary isotone functions for some natural number n.

- Numerical solution of coupled flow in plain and porous media (2003)
- The present thesis deals with coupled steady state laminar flows of isothermal incompressible viscous Newtonian fluids in plain and in porous media. The flow in the pure fluid region is usually described by the (Navier-)Stokes system of equations. The most popular models for the flow in the porous media are those suggested by Darcy and by Brinkman. Interface conditions, proposed in the mathematical literature for coupling Darcy and Navier-Stokes equations, are shortly reviewed in the thesis. The coupling of Navier-Stokes and Brinkman equations in the literature is based on the so called continuous stress tensor interface conditions. One of the main tasks of this thesis is to investigate another type of interface conditions, namely, the recently suggested stress tensor jump interface conditions. The mathematical models based on these interface conditions were not carefully investigated from the mathematical point of view, and also their validity was a subject of discussions. The considerations within this thesis are a step toward better understanding of these interface conditions. Several aspects of the numerical simulations of such coupled flows are considered: -the choice of proper interface conditions between the plain and porous media -analysis of the well-posedness of the arising systems of partial differential equations; -developing numerical algorithm for the stress tensor jump interface conditions, coupling Navier-Stokes equations in the pure liquid media with the Navier-Stokes-Brinkman equations in the porous media; -validation of the macroscale mathematical models on the base of a comparison with the results from a direct numerical simulation of model representative problems, allowing for grid resolution of the pore level geometry; -developing software and performing numerical simulation of 3-D industrial flows, namely of oil flows through car filters.

- Modelling, Estimating and Validating Multidimensional Distribution Functions -With Applications to Risk Management- (2003)
- The question of how to model dependence structures between financial assets was revolutionized since the last decade when the copula concept was introduced in financial research. Even though the concept of splitting marginal behavior and dependence structure (described by a copula) of multidimensional distributions already goes back to Sklar (1955) and Hoeffding (1940), there were very little empirical efforts done to check out the potentials of this approach. The aim of this thesis is to figure out the possibilities of copulas for modelling, estimating and validating purposes. Therefore we extend the class of Archimedean Copulas via a transformation rule to new classes and come up with an explicit suggestion covering the Frank and Gumbel family. We introduce a copula based mapping rule leading to joint independence and as results of this mapping we present an easy method of multidimensional chi²-testing and a new estimate for high dimensional parametric distributions functions. Different ways of estimating the tail dependence coefficient, describing the asymptotic probability of joint extremes, are compared and improved. The limitations of elliptical distributions are carried out and a generalized form of them, preserving their applicability, is developed. We state a method to split a (generalized) elliptical distribution into its radial and angular part. This leads to a positive definite robust estimate of the dispersion matrix (here only given as a theoretical outlook). The impact of our findings is stated by modelling and testing the return distributions of stock- and currency portfolios furthermore of oil related commodities- and LME metal baskets. In addition we show the crash stability of real estate based firms and the existence of nonlinear dependence in between the yield curve.

- Nonparametric Estimates for Conditional Quantiles of Time Series (2003)
- We consider the problem of estimating the conditional quantile of a time series at time t given observations of the same and perhaps other time series available at time t-1. We discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function, and prove its asymptotic normality and uniform strong consistency. We illustrate the good performance of the estimate for light and heavy-tailed distributions of the innovations with a small simulation study.

- A Survey of Approximation Methods in Multiobjective Programming (2003)
- Approaches to approximate the efficient and Pareto sets of multiobjective programs are reviewed. Special attention is given to approximating structures, methods generating Pareto points, and approximation quality. The survey covers 48 articles published since 1975.

- Algorithms for Time Dependent Bicriteria Shortest Path Problems (2003)
- We generalize the classical shortest path problem in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a traversal time on each arc. The resulting problem, called time-dependent bicriteria shortest path problem (TdBiSP) has several interesting practical applications, but has not attained much attention in the literature.

- Earliest Arrival Flows with Time-Dependent Data (2003)
- In this paper we discuss an earliest arrival flow problem of a network having arc travel times and capacities that vary with time over a finite time horizon T. We also consider the possibility to wait (or park) at a node before departingon outgoing arc. This waiting is bounded by the value of maximum waiting time and the node capacity which also vary with time.

- Set Covering With Almost Consecutive Ones Property (2003)
- In this paper we consider set covering problems with a coefficient matrix almost having the consecutive ones property, i.e., in many rows of the coefficient matrix, the ones appear consecutively. If this property holds for all rows it is well known that the set covering problem can be solved efficiently. For our case of almost consecutive ones we present a reformulation exploiting the consecutive ones structure to develop bounds and a branching scheme. Our approach has been tested on real-world data as well as on theoretical problem instances.

- A Tree Algorithm for Isotropic Finite Elements on the Sphere (2003)
- The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.