## Fachbereich Mathematik

### Refine

#### Year of publication

- 2000 (44) (remove)

#### Document Type

- Preprint (35)
- Lecture (5)
- Article (2)
- Master's Thesis (1)
- Study Thesis (1)

#### Keywords

- Logik (2)
- Algebraic Geometry (1)
- Black-Scholes model (1)
- CFL type conditions (1)
- Capital-at-Risk (1)
- Convex Analysis (1)
- Fokker-Planck equation (1)
- Geometrical algorithms (1)
- Grad expansion (1)
- Gravimetry (1)

- Wirkungsnetze dynamischer Systeme (2000)
- Aufgrund der vernetzten Strukturen und Wirkungszusammenhänge dynamischer Systeme werden die zugrundeliegenden mathematischen Modelle meist sehr komplex und erfordern ein hohes mathematisches Verständnis und Geschick. Bei Verwendung von spezieller Software können jedoch auch ohne tiefgehende mathematische oder informatorische Fachkenntnisse komplexe Wirkungsnetze dynamischer Systeme interaktiv erstellt werden. Als Beispiel wollen wir schrittweise das Modell einer Miniwelt entwerfen und Aussagen bezüglich ihrer Bevölkerungsentwicklung treffen.

- Vorlesung Logik (2000)

- Uniform Stability of a Finite Difference Scheme for Transport Equations in Diffusive Regimes (2000)
- An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

- The Balance Space Approach to Multicriteria Decision Making - Involving the Decision Maker (2000)
- The balance space approach (introduced by Galperin in 1990) provides a new view on multicriteria optimization. Looking at deviations from global optimality of the different objectives, balance points and balance numbers are defined when either different or equal deviations for each objective are allowed. Apportioned balance numbers allow the specification of proportions among the deviations. Through this concept the decision maker can be involved in the decision process. In this paper we prove that the apportioned balance number can be formulated by a min-max operator. Furthermore we prove some relations between apportioned balance numbers and the balance set, and see the representation of balance numbers in the balance set. The main results are necessary and sufficient conditions for the balance set to be exhaustive, which means that by multiplying a vector of weights (proportions of deviation) with its corresponding apportioned balance number a balance point is attained. The results are used to formulate an interactive procedure for multicriteria optimization. All results are illustrated by examples.

- Spherical Tikhonov Regularization Wavelets in Satellite Gravity Gradiometry with Random Noise (2000)
- This paper considers a special class of regularization methods for satellite gravity gradiometry based on Tikhonov spherical regularization wavelets with particular emphasis on the case of data blurred by random noise. A convergence rate is proved for the regularized solution, and a method is discussed for choosing the regularization level a posteriori from the gradiometer data.

- Some Complexity Results for k-Cardinality Minimum Cut Problems (2000)
- Many polynomially solvable combinatorial optimization problems (COP) become NP when we require solutions to satisfy an additional cardinality constraint. This family of problems has been considered only recently. We study a newproblem of this family: the k-cardinality minimum cut problem. Given an undirected edge-weighted graph the k-cardinality minimum cut problem is to find a partition of the vertex set V in two sets V 1 , V 2 such that the number of the edges between V 1 and V 2 is exactly k and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality minimum s-t cut problem where s and t are fixed vertices and we have the additional request that s belongs to V 1 and t belongs to V 2 . We also consider other variants where the number of edges of the cut is constrained to be either less or greater than k. For all these problems we show complexity results in the most significant graph classes.

- Scale Continuous, Scale Discretized and Scale Discrete Harmonic Wavelets for the Outer and the Inner Space of a Sphere and Their Application to an Inverse Problem in Geomathematics (2000)
- In this paper we construct a multiscale solution method for the gravimetry problem, which is concerned with the determination of the earth's density distribution from gravitational measurements. For this purpose isotropic scale continuous wavelets for harmonic functions on a ball and on a bounded outer space of a ball, respectively, are constructed. The scales are discretized and the results of numerical calculations based on regularization wavelets are presented. The obtained solutions yield topographical structures of the earth's surface at different levels of localization ranging from continental boundaries to local structures such as Ayer's Rock and the Amazonas area.

- Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity (2000)
- Linear viscoelastic properties for a dilute polymer solution are predicted by modeling the solution as a suspension of non-interacting bead-spring chains. The present model, unline the Rouse model, can describe the solution's rheological behavior even when the solvent quality is good, since excluded volume effects are explicitly taken into account through a narrow Gaussian repulsive potential between pairs of beads in a bead-spring chain. The use of the narrow Gaussian potential, which tends to the more commonly used delta-function repulsive potential in the limit of a width parameter d going to zero, enables the performance of Brownian dynamics simulations. The simulations results, which describe the exact behavior of the model, indicate that for chains of arbitrary but finite length, a delta-function potential leads to equilibrium and zero shear rate properties which are identical to the predictions of the Rouse model. On the other hand, a non-zero value of d gives rise to a predictionof swelling at equilibrium, and an increase in zero shear rate properties relative to their Rouse model values. The use of a delta-function potential appears to be justified in the limit of infinite chain length. The exact simulation results are compared with those obtained with an approximate solution, which is based on the assumption that the non-equilibrium configurational distribution function is Gaussian. The Gaussian approximation is shown to be exact to first order in the strength of excluded volume interaction, and is used to explore long chain rheological properties by extrapolating results obtained numerically for finite chains, to the limit of infinite chain length.

- Presentation of power-ordered sets (2000)
- Power-ordered sets are not always lattices. In the case of distributive lattices we give a description by disjoint of chains. Finite power-ordered sets have a polarity. We introduct the leveled lattices and show examples with trivial tolerance. Finally we give a list of Hasse diagrams of power-ordered sets.

- Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem (2000)
- We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet defining. We show its superior computational performance by benchmarking it on a well known data set.