## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 2000 (33) (entfernen)

#### Dokumenttyp

- Preprint (32)
- Diplomarbeit (1)

#### Sprache

- Englisch (33) (entfernen)

#### Schlagworte

- Algebraic Geometry (1)
- Black-Scholes model (1)
- CFL type conditions (1)
- Capital-at-Risk (1)
- Convex Analysis (1)
- Fokker-Planck equation (1)
- Geometrical algorithms (1)
- Grad expansion (1)
- Gravimetry (1)
- Ill-posed problem (1)

In this short note we prove some general results on semi-stable sheaves on P_2 and P_3 with arbitrary linear Hilbert polynomial. Using Beilinson's spectral sequence, we compute free resolutions for this class of semi-stable sheaves and deduce that the smooth moduli spaces M_{r m + s}(P_2) and M_{r m + r - s}(P_2) are birationally equivalent if r and s are coprime.

Power-ordered sets are not always lattices. In the case of distributive lattices we give a description by disjoint of chains. Finite power-ordered sets have a polarity. We introduct the leveled lattices and show examples with trivial tolerance. Finally we give a list of Hasse diagrams of power-ordered sets.

We consider investment problems where an investor can invest in a savings account, stocks and bonds and tries to maximize her utility from terminal wealth. In contrast to the classical Merton problem we assume a stochastic interest rate. To solve the corresponding control problems it is necessary to prove averi cation theorem without the usual Lipschitz assumptions.

In the Black-Scholes type financial market, the risky asset S 1 ( ) is supposed to satisfy dS 1 ( t ) = S 1 ( t )( b ( t ) dt + Sigma ( t ) dW ( t ) where W ( ) is a Brownian motion. The processes b ( ), Sigma ( ) are progressively measurable with respect to the filtration generated by W ( ). They are known as the mean rate of return and the volatility respectively. A portfolio is described by a progressively measurable processes Pi1 ( ), where Pi1 ( t ) gives the amount invested in the risky asset at the time t. Typically, the optimal portfolio Pi1 ( ) (that, which maximizes the expected utility), depends at the time t, among other quantities, on b ( t ) meaning that the mean rate of return shall be known in order to follow the optimal trading strategy. However, in a real-world market, no direct observation of this quantity is possible since the available information comes from the behavior of the stock prices which gives a noisy observation of b ( ). In the present work, we consider the optimal portfolio selection which uses only the observation of stock prices.

In multicriteria optimization problems the connectedness of the set of efficient solutions (pareto set) is of special interest since it would allow the determination of the efficient solutions without considering non-efficient solutions in the process. In the case of the multicriteria problem to minimize matchings the set of efficient solutions is not connected. The set of minimal solutions E pot with respect to the power ordered set contains the pareto set. In this work theorems about connectedness of E pot are given. These lead to an automated process to detect all efficient solutions.

Many polynomially solvable combinatorial optimization problems (COP) become NP when we require solutions to satisfy an additional cardinality constraint. This family of problems has been considered only recently. We study a newproblem of this family: the k-cardinality minimum cut problem. Given an undirected edge-weighted graph the k-cardinality minimum cut problem is to find a partition of the vertex set V in two sets V 1 , V 2 such that the number of the edges between V 1 and V 2 is exactly k and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality minimum s-t cut problem where s and t are fixed vertices and we have the additional request that s belongs to V 1 and t belongs to V 2 . We also consider other variants where the number of edges of the cut is constrained to be either less or greater than k. For all these problems we show complexity results in the most significant graph classes.

Performance of some preconditioners for the p - and hp -version of the finite element method in 3D
(2000)

In this paper we deal with single facility location problems in a general normed space where the existing facilities are represented by sets. The criterion to be satis ed by the service facility is the minimization of an increasing function of the distances from the service to the closest point ofeach demand set. We obtain a geometrical characterization of the set of optimal solutions for this problem. Two remarkable cases - the classical Weber problem and the minmax problem with demand sets - are studied as particular instances of our problem. Finally, for the planar polyhedral case we give an algorithmic description of the solution set of the considered problems.