The paper concerns the equilibrium state of ultra small semiconductor devices. Due to the quantum drift diffusion model, electrons and holes behave as a mixture of charged quantum fluids. Typically the involved scaled Plancks constants of holes, \(\xi\), is significantly smaller than the scaled Plancks constant of electrons. By setting formally \(\xi=0\) a well-posed differential-algebraic system arises. Existence and uniqueness of an equilibrium solution is proved. A rigorous asymptotic analysis shows that this equilibrium solution is the limit (in a rather strong sense) of quantum systems as \(\xi \to 0\). In particular the ground state energies of the quantum systems converge to the ground state energy of the differential-algebraic system as \(\xi \to 0\).

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

Mean field equations arise as steady state versions of convection-diffusion systems where the convective field is determined as solution of a Poisson equation whose right hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of 2 convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean field equation by a variational technique. Also we analyse the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.