## Fachbereich Mathematik

### Refine

#### Year of publication

- 1999 (130) (remove)

#### Document Type

- Preprint (121)
- Article (4)
- Lecture (3)
- Master's Thesis (1)
- Study Thesis (1)

#### Keywords

- On the distribution of the maximum of sums of dependent random variables (1999)
- The study of queuing theory brings us to the problems of finding to find the limit distribution of the maximal sum of a sequence of random variables and of estimating how close this distribution is to the distribution of the sum.

- Some reflections on and experiences with SPLIFS (1999)
- Starting from the uniqueness question for mixtures of distributions this review centers around the question under which formally weaker assumptions one can prove the existence of SPLIFs, in other words perfect statistics and tests. We mention a couple of positive and negative results which complement the basic contribution of David Blackwell in 1980. Typically the answers depend on the choice of the set theoretic axioms and on the particular concepts of measurability.

- Identifying a finite graph by its random walk (1999)
- In the following we illustrate by two examples and simplify the statement of the main result of a joint paper with Peter Scheffel

- Learning Oscillations Using Adaptiv Control (1999)
- We study a model for learning periodic signals in recurrent neural networks proposed by Doya and Yoshizawa [7] that can be considered as a model for temporal pattern memory in animal motoric systems. A network receives an external oscillatory input and adjusts its weights so that this signal can be reproduced approximately as the network output after some time. We use tools from adaptive control theory to derive an algorithm for weight matrices with special structure. If the input is generated by a network of the same structure the algorithm converges globally and does not exhibit the deficiencies of the back-propagation based approach of Doya and Yoshizawa under a persistency of excitation condition. This simple algorithm can also be used for open loop identification under quite restructive assumptions. The persistency of excitation condition cannot be proven even for the matrices with special structure but for a 3d system. For higher dimensional systems we give connections to the theory of linear time-varying systems where this condition is generically true (under assumption which are also needed in the time-invariant case). However, we cannot show that the linearized system related to the nonlinear neural network fulfills these generic assumptions.

- On analytic semigroups and cosine functions in Banach spaces (1999)
- If \(A\) generates a bounded cosine function on a Banach space \(X\) then the negative square root \(B\) of \(A\) generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by \(B\). This characterization relies on new results on the inversion of the vector-valued conjugate potential transform.

- A short note on functions of bounded semivariation and countably additive vector measures (1999)
- In the scalar case one knows that a complex normalized function of boundedvariation \(\phi\) on \([0,1]\) defines a unique complex regular Borel measure\(\mu\) on \([0,1]\). In this note we show that this is no longer true in generalin the vector valued case, even if \(\phi\) is assumed to be continuous. Moreover, the functions \(\phi\) which determine a countably additive vectormeasure \(\mu\) are characterized.

- Two equivalent norms for vector-valued holomorphic functions (1999)
- The following two norms for holomorphic functions \(F\), defined on the right complex half-plane \(\{z \in C:\Re(z)\gt 0\}\) with values in a Banach space \(X\), are equivalent: \[\begin{eqnarray*} \lVert F \rVert _{H_p(C_+)} &=& \sup_{a\gt0}\left( \int_{-\infty}^\infty \lVert F(a+ib) \rVert ^p \ db \right)^{1/p} \mbox{, and} \\ \lVert F \rVert_{H_p(\Sigma_{\pi/2})} &=& \sup_{\lvert \theta \lvert \lt \pi/2}\left( \int_0^\infty \left \lVert F(re^{i \theta}) \right \rVert ^p\ dr \right)^{1/p}.\end{eqnarray*}\] As a consequence, we derive a description of boundary values ofsectorial holomorphic functions, and a theorem of Paley-Wiener typefor sectorial holomorphic functions.

- Characterization of operators of positive scalar type (1999)
- Let \(X\) be a Banach lattice. Necessary and sufficient conditions for a linear operator \(A:D(A) \to X\), \(D(A)\subseteq X\), to be of positive \(C^0\)-scalar type are given. In addition, the question is discussed which conditions on the Banach lattice imply that every operator of positive \(C^0\)-scalar type is necessarily of positive scalar type.

- The Quantum Zero Space Charge Model for Semiconductors (1999)
- The thermal equilibrium state of a bipolar, isothermal quantum fluid confined to a bounded domain \(\Omega\subset I\!\!R^d,d=1,2\) or \( d=3\) is the minimizer of the total energy \({\mathcal E}_{\epsilon\lambda}\); \({\mathcal E}_{\epsilon\lambda}\) involves the squares of the scaled Planck's constant \(\epsilon\) and the scaled minimal Debye length \(\lambda\). In applications one frequently has \(\lambda^2\ll 1\). In these cases the zero-space-charge approximation is rigorously justified. As \(\lambda \to 0 \), the particle densities converge to the minimizer of a limiting quantum zero-space-charge functional exactly in those cases where the doping profile satisfies some compatibility conditions. Under natural additional assumptions on the internal energies one gets an differential-algebraic system for the limiting \((\lambda=0)\) particle densities, namely the quantum zero-space-charge model. The analysis of the subsequent limit \(\epsilon \to 0\) exhibits the importance of quantum gaps. The semiclassical zero-space-charge model is, for small \(\epsilon\), a reasonable approximation of the quantum model if and only if the quantum gap vanishes. The simultaneous limit \(\epsilon =\lambda \to 0\) is analyzed.