## Fachbereich Mathematik

### Refine

#### Year of publication

- 1999 (120) (remove)

#### Document Type

- Preprint (114)
- Article (4)
- Lecture (1)
- Master's Thesis (1)

#### Language

- English (120) (remove)

#### Keywords

- A Proposal for Syntactic Data Integration for Math Protocols (1999)
- The problem of providing connectivity for a collection of applications is largely one of data integration: the communicating parties must agree on thesemantics and syntax of the data being exchanged. In earlier papers [#!mp:jsc1!#,#!sg:BSG1!#], it was proposed that dictionaries of definitions foroperators, functions, and symbolic constants can effectively address the problem of semantic data integration. In this paper we extend that earlier work todiscuss the important issues in data integration at the syntactic level and propose a set of solutions that are both general, supporting a wide range of dataobjects with typing information, and efficient, supporting fast transmission and parsing.

- Effective Simplification of CR expressions (1999)
- Chains of Recurrences (CRs) are a tool for expediting the evaluation of elementary expressions over regular grids. CR based evaluations of elementaryexpressions consist of 3 major stages: CR construction, simplification, and evaluation. This paper addresses CR simplifications. The goal of CRsimplifications is to manipulate a CR such that the resulting expression is more efficiently to evaluate. We develop CR simplification strategies which takethe computational context of CR evaluations into account. Realizing that it is infeasible to always optimally simplify a CR expression, we give heuristicstrategies which, in most cases, result in a optimal, or close-to-optimal expressions. The motivations behind our proposed strategies are discussed and theresults are illustrated by various examples.

- Algorithms in Singular (1999)

- A reduction algorithm for integer multiple objective linear programs (1999)
- We consider a multiple objective linear program (MOLP) max{Cx|Ax = b,x in N_{0}^{n}} where C = (c_ij) is the p x n - matrix of p different objective functions z_i(x) = c_{i1}x_1 + ... + c_{in}x_n , i = 1,...,p and A is the m x n - matrix of a system of m linear equations a_{k1}x_1 + ... + a_{kn}x_n = b_k , k=1,...,m which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set M of admissable solutions {hat x} is an admissible solution such that there exists no other admissable solution x' with C{hat x} Cx'. The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions

- A Characterization of Lexicographic Max-Ordering Solutions (1999)
- In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

- Planar Location Problems with Line Barriers (1999)
- The Weber Problem for a given finite set of existing facilities {cal E}x = {Ex_1,Ex_2, ... ,Ex_M} subset R^2 with positive weights w_m (m = 1, ... ,M) is to find a new fcility X* such that sum_{m=1}^{M} w_{m}d(X,Ex_m) is minimized for some distance function d. A variation of this problem is obtained of the existing facilities are situated on two sides of a linear barrier. Such barriers like rivers, highways, borders or mountain ranges are frequently encountered in practice. Structural results as well as algorithms for this non-convex optimization problem depending on the distance function and on the number and location of passages through the barrier are presented. A reduction to convex optimization problems is used to derive efficient algorithms.