## Fachbereich Mathematik

### Refine

#### Year of publication

- 1999 (4) (remove)

- The Quantum Zero Space Charge Model for Semiconductors (1999)
- The thermal equilibrium state of a bipolar, isothermal quantum fluid confined to a bounded domain \(\Omega\subset I\!\!R^d,d=1,2\) or \( d=3\) is the minimizer of the total energy \({\mathcal E}_{\epsilon\lambda}\); \({\mathcal E}_{\epsilon\lambda}\) involves the squares of the scaled Planck's constant \(\epsilon\) and the scaled minimal Debye length \(\lambda\). In applications one frequently has \(\lambda^2\ll 1\). In these cases the zero-space-charge approximation is rigorously justified. As \(\lambda \to 0 \), the particle densities converge to the minimizer of a limiting quantum zero-space-charge functional exactly in those cases where the doping profile satisfies some compatibility conditions. Under natural additional assumptions on the internal energies one gets an differential-algebraic system for the limiting \((\lambda=0)\) particle densities, namely the quantum zero-space-charge model. The analysis of the subsequent limit \(\epsilon \to 0\) exhibits the importance of quantum gaps. The semiclassical zero-space-charge model is, for small \(\epsilon\), a reasonable approximation of the quantum model if and only if the quantum gap vanishes. The simultaneous limit \(\epsilon =\lambda \to 0\) is analyzed.

- A Singular-Perturbed Two-Phase Stefan Problem Due to Slow Diffusion (1999)
- The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

- On an Integral Equation Model for Slender Bodies in Low Reynolds-Number Flows (1999)
- The interation of particular slender bodies with low Reynolds-number flows is in the limit 'slenderness to 0' described by a linear Fredholm integral equation of the second kind. The integral operator of this equation has a denumerable set of polynomial eigenfunctions whose corresponding eigenvalues are non-positive and of logarithmic growth. A theorem similiar to a classical result of Plemelj-Privalov for integral operators with Cauchy kernels is proven. In contrast to Cauchy kernel operators, the integral operator maps no Hölder space into itself. A spectral analysis of the integral operator restricted to an appropriate class of analytic functions is performed. The spectral properties of this restricted integral operator suggest a collocation-like method to solve the integral equation numerically. For this numerical scheme, convergence is proven and several computations are presented.

- On a Recursive Approximation of Singularity Perturbed Parabolic Equations (extended version) (1999)
- The asymptotic analysis of IBVPs for the singularly perturbed parabolic PDE ... in the limit epsilon to zero motivate investigations of certain recursively defined approximative series ("ping-pong expansions"). The recursion formulae rely on operators assigning to a boundary condition at the left or the right boundary a solution of the parabolic PDE. Sufficient conditions for uniform convergence of ping-pong expansions are derived and a detailed analysis for the model problem ... is given.