## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 1996 (44) (entfernen)

#### Dokumenttyp

- Preprint (27)
- Bericht (14)
- Wissenschaftlicher Artikel (1)
- Diplomarbeit (1)
- Dissertation (1)

#### Schlagworte

- Boltzmann Equation (1)
- Cantor sets (1)
- Collision Operator (1)
- Evolutionary Integral Equations (1)
- Gröbner bases (1)
- Hamiltonian (1)
- K-cardinality trees (1)
- Kinetic Theory of Gases (1)
- Lagrange (1)
- Lavrentiev regularization (1)

- Toying with Jordan matrices (1996)
- It is shown that an important resolvent estimate is unstable under small perturbations.

- Tangent measure distributions of hyperbolic Cantor sets (1996)
- Tangent measure distributions were introduced by Bandt and Graf as a means to describe the local geometry of self-similar sets generated by iteration of contractive similitudes. In this paper we study the tangent measure distributions of hyperbolic Cantor sets generated by contractive mappings, which are not similitudes. We show that the tangent measure distributions of these sets equipped with either Hausdorff or Gibbs measure are unique almost everywhere and give an explicit formula describing them as probability distributions on the set of limit models of Bedford and Fisher.

- Superlinear convergence rates for the Lanczos method applied to elliptic operators (1996)
- This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts). Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem.

- Spherical Wavelet Transform and its Discretization (1996)
- A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

- Some formulae with logarithmic derivatives related to a quantization of some infinite-dimensional Hamiltonian (1996)
- Some formulae, containing logarithmic derivatives of (smooth) measures on infinitedimensional spaces, arise in quite different situations. In particular, logarithmic derivatives of a measure are inserted in the Schr"odinger equastion in the space consisting of functions that are square integrable with respect to this measure, what allows us to describe very simply a procedure of (canonical) quantization of infinite-dimensional Hamiltonian systems with the linear phase space. Further, the problem of reconstructing of a measure by its logarithmic derivative (that was posed in [1] independently of any applications) can be equivalent either to the problem of finding the "ground state" (considered as some measure) for infinite-dimensional Schr"odinger equation, or to the problem of finding an invariant measure for a stochastic differential equation (that is a central question of so-called stochastic quantization), or to the problem of recenstruc ting "Gibbsian measure by its specification" (i.e. by a collection of finite-dimensional conditional distributions). Logarithmic derivatives of some measure appear in Cameron-Martin-Girsanov-Maruyama formulae and in its generalizations related to arbitrary smooth measures; they allow also to connect these formulae and the Feynman-Kac formulae. This note discusses all these topics. Of course due to its shortness the presentation is formal in main, and precise analitical assumptions are usually absent. Actually only a list of formulae with small comments is given. Let us mention also that we do not consider at all so-called Dirichlet forms to which a great deal of literature is devoted (cf. [3] and references therein to the works of S. Alberion and others).

- Some Estimates on the Boltzmann Collision Operator (1996)
- The paper presents some new estimates on the gain term of the Boltzmann collision operator. For Maxwellian molecules, it is shown that the L -norm of the gain term can be bounded in terms of the L1 and L -norm of the density function f. In the case of more general collision kernels, like the hard-sphere interaction potential, the gain term is estimated pointwise by the L -norm of the density function and the loss term of the Boltzmann collision operator.

- Singular Optimal Control - The State of the Art (1996)
- The purpose of this paper is to present the state of the art in singular optimal control. If the Hamiltonian in an interval \([t_1,t_2]\) is independent of the control we call the control in this interval singular. Singular optimal controls appear in many applications so that research has been motivated since the 1950s. Often optimal controls consist of nonsingular and singular parts where the junctions between these parts are mostly very difficult to find. One section of this work shows the actual knowledge about the location of the junctions and the behaviour of the control at the junctions. The definition and the properties of the orders (problem order and arc order), which are important in this context, are given, too. Another chapter considers multidimensional controls and how they can be treated. An alternate definition of the orders in the multidimensional case is proposed and a counterexample, which confirms a remark given in the 1960s, is given. A voluminous list of optimality conditions, which can be found in several publications, is added. A strategy for solving optimal control problems numerically is given, and the existing algorithms are compared with each other. Finally conclusions and an outlook on the future research is given.