## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 1995 (45) (entfernen)

#### Dokumenttyp

- Preprint (27)
- Wissenschaftlicher Artikel (10)
- Bericht (6)
- Dissertation (1)
- Vorlesung (1)

#### Schlagworte

- Boltzmann Equation (3)
- Numerical Simulation (3)
- Hysteresis (2)
- Boundary Value Problems (1)
- CAQ (1)
- Evolution Equations (1)
- Fatigue (1)
- Hybrid Codes (1)
- Non-linear wavelet thresholding (1)
- Palm distributions (1)

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

With this article we first like to give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based on Gaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.; In the second part, we apply these non-linear adaptive shrinking schemes to spectral estimation problems for both a stationary and a non-stationary time series setup. For the latter one, in a model of Dahlhaus on the evolutionary spectrum of a locally stationary time series, we present two different approaches. Moreover, we show that in classes of anisotropic function spaces an appropriately chosen wavelet basis automatically adapts to possibly different degrees of regularity for the different directions. The resulting fully-adaptive spectral estimator attains the rate that is optimal in the idealized Gaussian white noise model up to a logarithmic factor.

This paper is devoted to the mathematica l description of the solution of the so-called rainflow reconstruction problem, i.e. the problem of constructing a time series with an a priori given rainflow m atrix. The algorithm we present is mathematically exact in the sense that no app roximations or heuristics are involved. Furthermore it generates a uniform distr ibution of all possible reconstructions and thus an optimal randomization of the reconstructed series. The algorithm is a genuine on-line scheme. It is easy adj ustable to all variants of rainflow such as sysmmetric and asymmetric versions a nd different residue techniques.

In the automotive industry both the loca l strain approach and rainflow counting are well known and approved tools in the numerical estimation of the lifetime of a new developed part especially in the automotive industry. This paper is devoted to the combination of both tools and a new algorithm is given that takes advantage of the inner structure of the most used damage parameters.

This paper deals with domain decomposition methods for kinetic and drift diffusion semiconductor equations. In particular accurate coupling conditions at the interface between the kinetic and drift diffusion domain are given. The cases of slight and strong nonequilibrium situations at the interface are considered and some numerical examples are shown.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

The ideas of texture analysis by means of the structure tensor are combined with the scale-space concept of anisotropic diffusion filtering. In contrast to many other nonlinear diffusion techniques, the proposed one uses a diffusion tensor instead of a scalar diffusivity. This allows true anisotropic behaviour. The preferred diffusion direction is determined according to the phase angle of the structure tensor. The diffusivity in this direction is increasing with the local coherence of the signal. This filter is constructed in such a way that it gives a mathematically well-funded scale-space representation of the original image. Experiments demonstrate its usefulness for the processing of interrupted one-dimensional structures such as fingerprint and fabric images.

Second Order Scheme for the Spatially Homogeneous Boltzmann Equation with Maxwellian Molecules
(1995)

In the standard approach, particle methods for the Boltzmann equation are obtained using an explicit time discretization of the spatially homogeneous Boltzmann equation. This kind of discretization leads to a restriction of the discretization parameter as well as on the differential cross section in the case of the general Boltzmann equation. Recently, it was shown, how to construct an implicit particle scheme for the Boltzmann equation with Maxwellian molecules. The present paper combines both approaches using a linear combination of explicit and implicit discretizations. It is shown that the new method leads to a second order particle method, when using an equiweighting of explicit and implicit discretization.