## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 1995 (45) (entfernen)

#### Dokumenttyp

- Preprint (27)
- Wissenschaftlicher Artikel (10)
- Bericht (6)
- Dissertation (1)
- Vorlesung (1)

#### Schlagworte

- Boltzmann Equation (3)
- Numerical Simulation (3)
- Hysteresis (2)
- Boundary Value Problems (1)
- CAQ (1)
- Evolution Equations (1)
- Fatigue (1)
- Hybrid Codes (1)
- Non-linear wavelet thresholding (1)
- Palm distributions (1)

- Fatigue Lifetime Estimation Based on Rainflow Counted Data Using the Local Strain Approach (1995)
- In the automotive industry both the loca l strain approach and rainflow counting are well known and approved tools in the numerical estimation of the lifetime of a new developed part especially in the automotive industry. This paper is devoted to the combination of both tools and a new algorithm is given that takes advantage of the inner structure of the most used damage parameters.

- Stochastic Reconstruction of Loading Histories from a Rainflow Matrix (1995)
- This paper is devoted to the mathematica l description of the solution of the so-called rainflow reconstruction problem, i.e. the problem of constructing a time series with an a priori given rainflow m atrix. The algorithm we present is mathematically exact in the sense that no app roximations or heuristics are involved. Furthermore it generates a uniform distr ibution of all possible reconstructions and thus an optimal randomization of the reconstructed series. The algorithm is a genuine on-line scheme. It is easy adj ustable to all variants of rainflow such as sysmmetric and asymmetric versions a nd different residue techniques.

- Lexicographic Max-Ordering - A Solution Concept for Multicriteria Combinatorial Optimization (1995)
- In this paper we will introduce the concept of lexicographic max-ordering solutions for multicriteria combinatorial optimization problems. Section 1 provides the basic notions of multicriteria combinatorial optimization and the definition of lexicographic max-ordering solutions. In Section 2 we will show that lexicographic max-ordering solutions are pareto optimal as well as max-ordering optimal solutions. Furthermore lexicographic max-ordering solutions can be used to characterize the set of pareto solutions. Further properties of lexicographic max-ordering solutions are given. Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the two criteria case where one criterion is a sum and one is a bottleneck objective function, provided that the one criterion sum problem is solvable in polynomial time. For bottleneck functions an algorithm for the general case of Q criteria is presented.

- On Matroids with Multiple Objectives (1995)
- In this paper we investigate two optimization problems for matroids with multiple objective functions, namely finding the pareto set and the max-ordering problem which conists in finding a basis such that the largest objective value is minimal. We prove that the decision versions of both problems are NP-complete. A solution procedure for the max-ordering problem is presented and a result on the relation of the solution sets of the two problems is given. The main results are a characterization of pareto bases by a basis exchange property and finally a connectivity result for proper pareto solutions.

- A Note on Approximation Algorithms for the Multicriteria \(\Delta\)-TSP (1995)
- The Tree and Christofides heuristic are weil known 1- and \(\frac{1} {2}\)- approximate algorithms for the \(\Delta\)-TSP. In this note their performance for the multicriteria case is described, depending on the norm in \(\mathbb{R}^Q\) in case of \(Q\) criteria.

- Connectedness of Efficient Solutions in Multiple Criteria Combinatorial Optimization (1995)
- In multiple criteria optimization an important research topic is the topological structure of the set \( X_e \) of efficient solutions. Of major interest is the connectedness of \( X_e \), since it would allow the determination of \( X_e \) without considering non-efficient solutions in the process. We review general results on the subject,including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.

- Equidistribution on the Sphere (1995)
- A concept of generalized discrepancy, which involves pseudodifferential operators to give a criterion of equidistributed pointsets, is developed on the sphere. A simply structured formula in terms of elementary functions is established for the computation of the generalized discrepancy. With the help of this formula five kinds of point systems on the sphere, namely lattices in polar coordinates, transformed 2-dimensional sequences, rotations on the sphere, triangulation, and sum of three squares sequence, are investigated. Quantitative tests are done, and the results are compared with each other. Our calculations exhibit different orders of convergence of the generalized discrepancy for different types of point systems.

- A: New Wavelet Methods for Approximating Harmonic Functions; B: Satellite Gradiometry - from Mathematical and Numerical Point of View (1995)
- Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.