## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (936)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (600)
- Dissertation (204)
- Bericht (42)
- Wissenschaftlicher Artikel (30)
- Diplomarbeit (25)
- Vorlesung (19)
- Teil eines Buches (Kapitel) (4)
- Studienarbeit (4)
- Arbeitspapier (3)
- Masterarbeit (2)

#### Schlagworte

- Wavelet (13)
- Inverses Problem (11)
- Mehrskalenanalyse (10)
- Modellierung (10)
- Mathematikunterricht (9)
- praxisorientiert (9)
- Mathematische Modellierung (8)
- Boltzmann Equation (7)
- Location Theory (7)
- MINT (7)

- Manifolds (2017)
- Lecture notes written to accompany a one semester course introducing to differential manifolds. Beyond the basic notions differential forms including Stokes' theorem are treated, as well as vector fields and flows on a differential manifold.

- Having a Plan B for Robust Optimization (2017)
- We extend the standard concept of robust optimization by the introduction of an alternative solution. In contrast to the classic concept, one is allowed to chose two solutions from which the best can be picked after the uncertain scenario has been revealed. We focus in this paper on the resulting robust problem for combinatorial problems with bounded uncertainty sets. We present a reformulation of the robust problem which decomposes it into polynomially many subproblems. In each subproblem one needs to find two solutions which are connected by a cost function which penalizes if the same element is part of both solutions. Using this reformulation, we show how the robust problem can be solved efficiently for the unconstrained combinatorial problem, the selection problem, and the minimum spanning tree problem. The robust problem corresponding to the shortest path problem turns out to be NP-complete on general graphs. However, for series-parallel graphs, the robust shortest path problem can be solved efficiently. Further, we show how approximation algorithms for the subproblem can be used to compute approximate solutions for the original problem.

- Portfolio Optimization with Risk Constraints in the View of Stochastic Interest Rates (2017)
- We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free financial market where a money market account, coupon bonds and a stock are traded continuously. We allow for stochastic interest rates and in particular consider one and two-factor Vasicek models for the instantaneous short rates. In both cases we consider a complete and an incomplete market setting by adding a suitable number of bonds. The goal of an investor is to find a portfolio which maximizes expected utility from terminal wealth under budget and present expected short-fall (PESF) risk constraints. We analyze this portfolio optimization problem in both complete and incomplete financial markets in three different cases: (a) when the PESF risk is minimum, (b) when the PESF risk is between minimum and maximum and (c) without risk constraints. (a) corresponds to the portfolio insurer problem, in (b) the risk constraint is binding, i.e., it is satisfied with equality, and (c) corresponds to the unconstrained Merton investment. In all cases we find the optimal terminal wealth and portfolio process using the martingale method and Malliavin calculus respectively. In particular we solve in the incomplete market settings the dual problem explicitly. We compare the optimal terminal wealth in the cases mentioned using numerical examples. Without risk constraints, we further compare the investment strategies for complete and incomplete market numerically.

- Asymptotics for change-point tests and change-point estimators (2017)
- In change-point analysis the point of interest is to decide if the observations follow one model or if there is at least one time-point, where the model has changed. This results in two sub- fields, the testing of a change and the estimation of the time of change. This thesis considers both parts but with the restriction of testing and estimating for at most one change-point. A well known example is based on independent observations having one change in the mean. Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was derived for this model. As it is a well-known fact that the corresponding convergence rate is very slow, modifications of the test using a weight function were considered. Those tests have a better performance. We focus on this class of test statistics. The first part gives a detailed introduction to the techniques for analysing test statistics and estimators. Therefore we consider the multivariate mean change model and focus on the effects of the weight function. In the case of change-point estimators we can distinguish between the assumption of a fixed size of change (fixed alternative) and the assumption that the size of the change is converging to 0 (local alternative). Especially, the fixed case in rarely analysed in the literature. We show how to come from the proof for the fixed alternative to the proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate observations. The main part of this thesis focuses on two points. First, analysing test statistics and, secondly, analysing the corresponding change-point estimators. In both cases, we first consider a change in the mean for independent observations but relaxing the moment condition. Based on a robust estimator for the mean, we derive a new type of change-point test having a randomized weight function. Secondly, we analyse non-linear autoregressive models with unknown regression function. Based on neural networks, test statistics and estimators are derived for correctly specified as well as for misspecified situations. This part extends the literature as we analyse test statistics and estimators not only based on the sample residuals. In both sections, the section on tests and the one on the change-point estimator, we end with giving regularity conditions on the model as well as the parameter estimator. Finally, a simulation study for the case of the neural network based test and estimator is given. We discuss the behaviour under correct and mis-specification and apply the neural network based test and estimator on two data sets.

- Small self-centralizing subgroups in defect groups of finite classical groups (2017)
- In this thesis, we consider a problem from modular representation theory of finite groups. Lluís Puig asked the question whether the order of the defect groups of a block \( B \) of the group algebra of a given finite group \( G \) can always be bounded in terms of the order of the vertices of an arbitrary simple module lying in \( B \). In characteristic \( 2 \), there are examples showing that this is not possible in general, whereas in odd characteristic, no such examples are known. For instance, it is known that the answer to Puig's question is positive in case that \( G \) is a symmetric group, by work of Danz, Külshammer, and Puig. Motivated by this, we study the cases where \( G \) is a finite classical group in non-defining characteristic or one of the finite groups \( G_2(q) \) or \( ³D_4(q) \) of Lie type, again in non-defining characteristic. Here, we generalize Puig's original question by replacing the vertices occurring in his question by arbitrary self-centralizing subgroups of the defect groups. We derive positive and negative answers to this generalized question. \[\] In addition to that, we determine the vertices of the unipotent simple \( GL_2(q) \)-module labeled by the partition \( (1,1) \) in characteristic \( 2 \). This is done using a method known as Brauer construction.

- Wir entwickeln einen Synthesizer (2017)
- Die Akustik liefert einen interessanten Hintergrund, interdisziplinären und fächerverbindenen Unterricht zwischen Mathematik, Physik und Musik durchzuführen. SchülerInnen können hierbei beispielsweise experimentell tätig sein, indem sie Audioaufnahmen selbst erzeugen und sich mit Computersoftware Frequenzspektren erzeugen lassen. Genauso können die Schüler auch Frequenzspektren vorgeben und daraus Klänge erzeugen. Dies kann beispielsweise dazu dienen, den Begriff der Obertöne im Musikunterricht physikalisch oder mathematisch greifbar zu machen oder in der Harmonielehre Frequenzverhältnisse von Intervallen und Dreiklängen näher zu untersuchen. Der Computer ist hier ein sehr nützliches Hilfsmittel, da der mathematische Hintergrund dieser Aufgabe -- das Wechseln zwischen Audioaufnahme und ihrem Frequenzbild -- sich in der Fourier-Analysis findet, die für SchülerInnen äußerst anspruchsvoll ist. Indem man jedoch die Fouriertransformation als numerisches Hilfsmittel einführt, das nicht im Detail verstanden werden muss, lässt sich an anderer Stelle interessante Mathematik betreiben und die Zusammenhänge zwischen Akustik und Musik können spielerisch erfahren werden. Im folgenden Beitrag wird eine Herangehensweise geschildert, wie wir sie bereits bei der Felix-Klein-Modellierungswoche umgesetzt haben: Die SchülerInnen haben den Auftrag erhalten, einen Synthesizer zu entwickeln, mit dem verschiedene Musikinstrumente nachgeahmt werden können. Als Hilfsmittel haben sie eine kurze Einführung in die Eigenschaften der Fouriertransformation erhalten, sowie Audioaufnahmen verschiedener Instrumente.

- Einfaches Motion Capturing in MATLAB (2017)
- Der vorliegende Artikel befasst sich mit der Realisierung eines einfachen Motion Capturing Verfahrens in MATLAB als Vorschlag für eine Umsetzung in der Schule. Die zugrunde liegende Mathematik kann ab der Mittelstufe leicht vermittelt werden. Je nach technischer Ausstattung können mit einfachen Mitteln farbige Marker in Videos oder Webcam-Streams verfolgt werden. Notwendige Konzepte und Algorithmen werden im Artikel beleuchtet.

- The Bootstrap for the Functional Autoregressive Model FAR(1) (2016)
- Functional data analysis is a branch of statistics that deals with observations \(X_1,..., X_n\) which are curves. We are interested in particular in time series of dependent curves and, specifically, consider the functional autoregressive process of order one (FAR(1)), which is defined as \(X_{n+1}=\Psi(X_{n})+\epsilon_{n+1}\) with independent innovations \(\epsilon_t\). Estimates \(\hat{\Psi}\) for the autoregressive operator \(\Psi\) have been investigated a lot during the last two decades, and their asymptotic properties are well understood. Particularly difficult and different from scalar- or vector-valued autoregressions are the weak convergence properties which also form the basis of the bootstrap theory. Although the asymptotics for \(\hat{\Psi}{(X_{n})}\) are still tractable, they are only useful for large enough samples. In applications, however, frequently only small samples of data are available such that an alternative method for approximating the distribution of \(\hat{\Psi}{(X_{n})}\) is welcome. As a motivation, we discuss a real-data example where we investigate a changepoint detection problem for a stimulus response dataset obtained from the animal physiology group at the Technical University of Kaiserslautern. To get an alternative for asymptotic approximations, we employ the naive or residual-based bootstrap procedure. In this thesis, we prove theoretically and show via simulations that the bootstrap provides asymptotically valid and practically useful approximations of the distributions of certain functions of the data. Such results may be used to calculate approximate confidence bands or critical bounds for tests.

- Integrality of representations of finite groups (2016)
- Since the early days of representation theory of finite groups in the 19th century, it was known that complex linear representations of finite groups live over number fields, that is, over finite extensions of the field of rational numbers. While the related question of integrality of representations was answered negatively by the work of Cliff, Ritter and Weiss as well as by Serre and Feit, it was not known how to decide integrality of a given representation. In this thesis we show that there exists an algorithm that given a representation of a finite group over a number field decides whether this representation can be made integral. Moreover, we provide theoretical and numerical evidence for a conjecture, which predicts the existence of splitting fields of irreducible characters with integrality properties. In the first part, we describe two algorithms for the pseudo-Hermite normal form, which is crucial when handling modules over ring of integers. Using a newly developed computational model for ideal and element arithmetic in number fields, we show that our pseudo-Hermite normal form algorithms have polynomial running time. Furthermore, we address a range of algorithmic questions related to orders and lattices over Dedekind domains, including computation of genera, testing local isomorphism, computation of various homomorphism rings and computation of Solomon zeta functions. In the second part we turn to the integrality of representations of finite groups and show that an important ingredient is a thorough understanding of the reduction of lattices at almost all prime ideals. By employing class field theory and tools from representation theory we solve this problem and eventually describe an algorithm for testing integrality. After running the algorithm on a large set of examples we are led to a conjecture on the existence of integral and nonintegral splitting fields of characters. By extending techniques of Serre we prove the conjecture for characters with rational character field and Schur index two.

- Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information (2016)
- In a financial market we consider three types of investors trading with a finite time horizon with access to a bank account as well as multliple stocks: the fully informed investor, the partially informed investor whose only source of information are the stock prices and an investor who does not use this infor- mation. The drift is modeled either as following linear Gaussian dynamics or as being a continuous time Markov chain with finite state space. The optimization problem is to maximize expected utility of terminal wealth. The case of partial information is based on the use of filtering techniques. Conditions to ensure boundedness of the expected value of the filters are developed, in the Markov case also for positivity. For the Markov modulated drift, boundedness of the expected value of the filter relates strongly to port- folio optimization: effects are studied and quantified. The derivation of an equivalent, less dimensional market is presented next. It is a type of Mutual Fund Theorem that is shown here. Gains and losses eminating from the use of filtering are then discussed in detail for different market parameters: For infrequent trading we find that both filters need to comply with the boundedness conditions to be an advan- tage for the investor. Losses are minimal in case the filters are advantageous. At an increasing number of stocks, again boundedness conditions need to be met. Losses in this case depend strongly on the added stocks. The relation of boundedness and portfolio optimization in the Markov model leads here to increasing losses for the investor if the boundedness condition is to hold for all numbers of stocks. In the Markov case, the losses for different numbers of states are negligible in case more states are assumed then were originally present. Assuming less states leads to high losses. Again for the Markov model, a simplification of the complex optimal trading strategy for power utility in the partial information setting is shown to cause only minor losses. If the market parameters are such that shortselling and borrowing constraints are in effect, these constraints may lead to big losses depending on how much effect the constraints have. They can though also be an advantage for the investor in case the expected value of the filters does not meet the conditions for boundedness. All results are implemented and illustrated with the corresponding numerical findings.