## Fachbereich Mathematik

### Refine

#### Year of publication

- 2011 (28) (remove)

#### Document Type

- Doctoral Thesis (14)
- Preprint (9)
- Report (5)

#### Language

- English (28) (remove)

#### Keywords

- autoregressive process (3)
- neural network (2)
- nonparametric regression (2)
- (dynamic) network flows (1)
- CUSUM statistic (1)
- Change analysis (1)
- Chow Quotient (1)
- Copula (1)
- Credit Default Swap (1)
- Dynamic Network Flows (1)

- Tropical orbit spaces and moduli spaces of tropical curves (2011)
- A main result of this thesis is a conceptual proof of the fact that the weighted number of tropical curves of given degree and genus, which pass through the right number of general points in the plane (resp., which pass through general points in R^r and represent a given point in the moduli space of genus g curves) is independent of the choices of points. Another main result is a new correspondence theorem between plane tropical cycles and plane elliptic algebraic curves.

- On a Cardinality Constrained Multicriteria Knapsack Problem (2011)
- We consider a variant of a knapsack problem with a fixed cardinality constraint. There are three objective functions to be optimized: one real-valued and two integer-valued objectives. We show that this problem can be solved efficiently by a local search. The algorithm utilizes connectedness of a subset of feasible solutions and has optimal run-time.

- Locally Supported Wavelets for the Separation of Spherical Vector Fields with Respect to their Sources (2011)
- We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

- Reliable and Restricted Quickest Path Problems (2011)
- In a dynamic network, the quickest path problem asks for a path minimizing the time needed to send a given amount of flow from source to sink along this path. In practical settings, for example in evacuation or transportation planning, the reliability of network arcs depends on the specific scenario of interest. In this circumstance, the question of finding a quickest path among all those having at least a desired path reliability arises. In this article, this reliable quickest path problem is solved by transforming it to the restricted quickest path problem. In the latter, each arc is associated a nonnegative cost value and the goal is to find a quickest path among those not exceeding a predefined budget with respect to the overall (additive) cost value. For both, the restricted and reliable quickest path problem, pseudopolynomial exact algorithms and fully polynomial-time approximation schemes are proposed.

- The Multi Terminal q-FlowLoc Problem: A Heuristic (2011)
- In this paper the multi terminal q-FlowLoc problem (q-MT-FlowLoc) is introduced. FlowLoc problems combine two well-known modeling tools: (dynamic) network flows and locational analysis. Since the q-MT-FlowLoc problem is NP-hard we give a mixed integer programming formulation and propose a heuristic which obtains a feasible solution by calculating a maximum flow in a special graph H. If this flow is also a minimum cost flow, various versions of the heuristic can be obtained by the use of different cost functions. The quality of this solutions is compared.

- A Multi-Phase Flow Model Incorporated with Population Balance Equation in a Meshfree Framework (2011)
- This study deals with the numerical solution of a meshfree coupled model of Computational Fluid Dynamics (CFD) and Population Balance Equation (PBE) for liquid-liquid extraction columns. In modeling the coupled hydrodynamics and mass transfer in liquid extraction columns one encounters multidimensional population balance equation that could not be fully resolved numerically within a reasonable time necessary for steady state or dynamic simulations. For this reason, there is an obvious need for a new liquid extraction model that captures all the essential physical phenomena and still tractable from computational point of view. This thesis discusses a new model which focuses on discretization of the external (spatial) and internal coordinates such that the computational time is drastically reduced. For the internal coordinates, the concept of the multi-primary particle method; as a special case of the Sectional Quadrature Method of Moments (SQMOM) is used to represent the droplet internal properties. This model is capable of conserving the most important integral properties of the distribution; namely: the total number, solute and volume concentrations and reduces the computational time when compared to the classical finite difference methods, which require many grid points to conserve the desired physical quantities. On the other hand, due to the discrete nature of the dispersed phase, a meshfree Lagrangian particle method is used to discretize the spatial domain (extraction column height) using the Finite Pointset Method (FPM). This method avoids the extremely difficult convective term discretization using the classical finite volume methods, which require a lot of grid points to capture the moving fronts propagating along column height.

- Testing for parameter stability in nonlinear autoregressive models (2011)
- In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.

- A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis (2011)
- We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

- A new similarity measure for nonlocal filtering in the presence of multiplicative noise (2011)
- This paper presents a new similarity measure and nonlocal filters for images corrupted by multiplicative noise. The considered filters are generalizations of the nonlocal means filter of Buades et al., which is known to be well suited for removing additive Gaussian noise. To adapt to different noise models, the patch comparison involved in this filter has first of all to be performed by a suitable noise dependent similarity measure. To this purpose, we start by studying a probabilistic measure recently proposed for general noise models by Deledalle et al. We analyze this measure in the context of conditional density functions and examine its properties for images corrupted by additive and multiplicative noise. Since it turns out to have unfavorable properties for multiplicative noise we deduce a new similarity measure consisting of a probability density function specially chosen for this type of noise. The properties of our new measure are studied theoretically as well as by numerical experiments. To obtain the final nonlocal filters we apply a weighted maximum likelihood estimation framework, which also incorporates the noise statistics. Moreover, we define the weights occurring in these filters using our new similarity measure and propose different adaptations to further improve the results. Finally, restoration results for images corrupted by multiplicative Gamma and Rayleigh noise are presented to demonstrate the very good performance of our nonlocal filters.

- Valuation of Credit Derivatives (2011)
- In this work two main approaches for the evaluation of credit derivatives are analyzed: the copula based approach and the Markov Chain based approach. This work gives the opportunity to use the advantages and avoid disadvantages of both approaches. For example, modeling of contagion effects, i.e. modeling dependencies between counterparty defaults, is complicated under the copula approach. One remedy is to use Markov Chain, where it can be done directly. The work consists of five chapters. The first chapter of this work extends the model for the pricing of CDS contracts presented in the paper by Kraft and Steffensen (2007). In the widely used models for CDS pricing it is assumed that only borrower can default. In our model we assume that each of the counterparties involved in the contract may default. Calculated contract prices are compared with those calculated under usual assumptions. All results are summarized in the form of numerical examples and plots. In the second chapter the copula and its main properties are described. The methods of constructing copulas as well as most common copulas families and its properties are introduced. In the third chapter the method of constructing a copula for the existing Markov Chain is introduced. The cases with two and three counterparties are considered. Necessary relations between the transition intensities are derived to directly find some copula functions. The formulae for default dependencies like Spearman's rho and Kendall's tau for defined copulas are derived. Several numerical examples are presented in which the copulas are built for given Markov Chains. The fourth chapter deals with the approximation of copulas if for a given Markov Chain a copula cannot be provided explicitly. The fifth chapter concludes this thesis.