## Fachbereich Mathematik

### Refine

#### Year of publication

- 2000 (33) (remove)

#### Document Type

- Preprint (32)
- Master's Thesis (1)

#### Language

- English (33) (remove)

#### Keywords

- Algebraic Geometry (1)
- Black-Scholes model (1)
- CFL type conditions (1)
- Capital-at-Risk (1)
- Convex Analysis (1)
- Fokker-Planck equation (1)
- Geometrical algorithms (1)
- Grad expansion (1)
- Gravimetry (1)
- Ill-posed problem (1)

- Spherical Tikhonov Regularization Wavelets in Satellite Gravity Gradiometry with Random Noise (2000)
- This paper considers a special class of regularization methods for satellite gravity gradiometry based on Tikhonov spherical regularization wavelets with particular emphasis on the case of data blurred by random noise. A convergence rate is proved for the regularized solution, and a method is discussed for choosing the regularization level a posteriori from the gradiometer data.

- Scale Continuous, Scale Discretized and Scale Discrete Harmonic Wavelets for the Outer and the Inner Space of a Sphere and Their Application to an Inverse Problem in Geomathematics (2000)
- In this paper we construct a multiscale solution method for the gravimetry problem, which is concerned with the determination of the earth's density distribution from gravitational measurements. For this purpose isotropic scale continuous wavelets for harmonic functions on a ball and on a bounded outer space of a ball, respectively, are constructed. The scales are discretized and the results of numerical calculations based on regularization wavelets are presented. The obtained solutions yield topographical structures of the earth's surface at different levels of localization ranging from continental boundaries to local structures such as Ayer's Rock and the Amazonas area.

- Multiscale Signal-to-Noise Thresholding (2000)
- The basic idea behind selective multiscale reconstruction of functions from error-affected data is outlined on the sphere. The selective reconstruction mechanism is based on the premise that multiscale approximation can be well-represented in terms of only a relatively small number of expansion coefficients at various resolution levels. An attempt is made within a tree algorithm (pyramid scheme) to remove the noise component from each scale coefficient using a priori statistical information (provided by an error covariance kernel of a Gaussian, stationary stochastic model).

- Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity (2000)
- Linear viscoelastic properties for a dilute polymer solution are predicted by modeling the solution as a suspension of non-interacting bead-spring chains. The present model, unline the Rouse model, can describe the solution's rheological behavior even when the solvent quality is good, since excluded volume effects are explicitly taken into account through a narrow Gaussian repulsive potential between pairs of beads in a bead-spring chain. The use of the narrow Gaussian potential, which tends to the more commonly used delta-function repulsive potential in the limit of a width parameter d going to zero, enables the performance of Brownian dynamics simulations. The simulations results, which describe the exact behavior of the model, indicate that for chains of arbitrary but finite length, a delta-function potential leads to equilibrium and zero shear rate properties which are identical to the predictions of the Rouse model. On the other hand, a non-zero value of d gives rise to a predictionof swelling at equilibrium, and an increase in zero shear rate properties relative to their Rouse model values. The use of a delta-function potential appears to be justified in the limit of infinite chain length. The exact simulation results are compared with those obtained with an approximate solution, which is based on the assumption that the non-equilibrium configurational distribution function is Gaussian. The Gaussian approximation is shown to be exact to first order in the strength of excluded volume interaction, and is used to explore long chain rheological properties by extrapolating results obtained numerically for finite chains, to the limit of infinite chain length.

- On singular limits of mean-field equations (2000)
- Mean field equations arise as steady state versions of convection-diffusion systems where the convective field is determined as solution of a Poisson equation whose right hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of 2 convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean field equation by a variational technique. Also we analyse the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.

- An Integer Programming Approach to the Multileaf Collimator Problem (2000)
- This essay discusses the multileaf collimator leaf sequencing problem, which occurs in every treatment planning in radiation therapy. The problem is to find a good realization in terms of a leaf sequence in the multileaf collimator such that the time needed to deliver the given dose profile is minimized. A mathematical model using an integer programming formulation has been developed. Additionally, a heuristic, based on existing algorithms and an integer programming formulation, has been developed to enhance the quality of the solutions. Comparing the results to those provided by other algorithms, a significant improvement can be observed.

- Exponentially exact hyperbolic systems (2000)
- Starting with general hyperbolic systems of conservation laws, a special sub - class is extracted in which classical solutions can be expressed in terms of a linear transport equation. A characterizing property of this sub - class which contains, for example, all linear systems and non - linear scalar equations, is the existence of so called exponentially exact entropies.

- Consistency analysis of mesh-free methods for conservation laws (2000)
- Based on general partitions of unity and standard numerical flux functions, a class of mesh-free methods for conservation laws is derived. A Lax-Wendroff type consistency analysis is carried out for the general case of moving partition functions. The analysis leads to a set of conditions which are checked for the finite volume particle method FVPM. As a by-product, classical finite volume schemes are recovered in the approach for special choices of the partition of unity.

- On the minimal energy state of a mixture of charged classical and quantum fluids (2000)
- The paper concerns the equilibrium state of ultra small semiconductor devices. Due to the quantum drift diffusion model, electrons and holes behave as a mixture of charged quantum fluids. Typically the involved scaled Plancks constants of holes, \(\xi\), is significantly smaller than the scaled Plancks constant of electrons. By setting formally \(\xi=0\) a well-posed differential-algebraic system arises. Existence and uniqueness of an equilibrium solution is proved. A rigorous asymptotic analysis shows that this equilibrium solution is the limit (in a rather strong sense) of quantum systems as \(\xi \to 0\). In particular the ground state energies of the quantum systems converge to the ground state energy of the differential-algebraic system as \(\xi \to 0\).