## Fachbereich Mathematik

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (784)
- Fraunhofer (ITWM) (2)

#### Year of publication

#### Document Type

- Preprint (530)
- Doctoral Thesis (164)
- Report (35)
- Article (23)
- Diploma Thesis (20)
- Lecture (6)
- Study Thesis (2)
- Working Paper (2)
- Bachelor Thesis (1)
- Periodical (1)

#### Language

- English (784) (remove)

#### Keywords

- Wavelet (12)
- Inverses Problem (10)
- Mehrskalenanalyse (8)
- Boltzmann Equation (7)
- Location Theory (7)
- Approximation (6)
- Navier-Stokes-Gleichung (6)
- Elastoplastizität (5)
- Numerical Simulation (5)
- Algebraische Geometrie (4)

- Freeness of hyperplane arrangements with multiplicities (2015)
- This bachelor thesis is concerned with arrangements of hyperplanes, that is, finite collections of hyperplanes in a finite-dimensional vector space. Such arrangements can be studied using methods from combinatorics, topology or algebraic geometry. Our focus lies on an algebraic object associated to an arrangement \(\mathcal{A}\), the module \(\mathcal{D(A)}\) of logarithmic derivations along \(\mathcal{A}\). It was introduced by K. Saito in the context of singularity theory, and intensively studied by Terao and others. If \(\mathcal{D(A)}\) admits a basis, the arrangement \(\mathcal{A}\) is called free. Ziegler generalized the concept of freeness to so-called multiarrangements, where each hyperplane carries a multiplicity. Terao conjectured that freeness of arrangements can be decided based on the combinatorics. We pursue the analogous question for multiarrangements in special cases. Firstly, we give a new proof of a result of Ziegler stating that generic multiarrangements are totally non-free, that is, non-free for any multiplicity. Our proof relies on the new concept of unbalanced multiplicities. Secondly, we consider freeness asymptotically for increasing multiplicity of a fixed hyperplane. We give an explicit bound for the multiplicity where the freeness property has stabilized.

- Modeling and Simulation of a Moving Rigid Body in a Rarefied Gas (2015)
- We present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas micro flows, in view of applications to complex computations of moving structures in micro or vacuum systems. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body is computed from the momentum transfer of the gas molecules colliding with the body. The resulting motion of the rigid body affects in turn again the gas flow in the surroundings. This means that a two-way coupling has been modeled. We validate the scheme by performing various numerical experiments in 1-, 2- and 3-dimensional computational domains. We have presented 1-dimensional actuator problem, 2-dimensional cavity driven flow problem, Brownian diffusion of a spherical particle both with translational and rotational motions, and finally thermophoresis on a spherical particles. We compare the numerical results obtained from the numerical simulations with the existing theories in each test examples.

- Modeling and design optimization of textile-like materials via homogenization and one-dimensional models of elasticity (2015)
- The work consists of two parts. In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided. In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

- Worst-Case Portfolio Optimization: Transaction Costs and Bubbles (2015)
- In this thesis we extend the worst-case modeling approach as first introduced by Hua and Wilmott (1997) (option pricing in discrete time) and Korn and Wilmott (2002) (portfolio optimization in continuous time) in various directions. In the continuous-time worst-case portfolio optimization model (as first introduced by Korn and Wilmott (2002)), the financial market is assumed to be under the threat of a crash in the sense that the stock price may crash by an unknown fraction at an unknown time. It is assumed that only an upper bound on the size of the crash is known and that the investor prepares for the worst-possible crash scenario. That is, the investor aims to find the strategy maximizing her objective function in the worst-case crash scenario. In the first part of this thesis, we consider the model of Korn and Wilmott (2002) in the presence of proportional transaction costs. First, we treat the problem without crashes and show that the value function is the unique viscosity solution of a dynamic programming equation (DPE) and then construct the optimal strategies. We then consider the problem in the presence of crash threats, derive the corresponding DPE and characterize the value function as the unique viscosity solution of this DPE. In the last part, we consider the worst-case problem with a random number of crashes by proposing a regime switching model in which each state corresponds to a different crash regime. We interpret each of the crash-threatened regimes of the market as states in which a financial bubble has formed which may lead to a crash. In this model, we prove that the value function is a classical solution of a system of DPEs and derive the optimal strategies.

- A multiscale modeling approach to glioma invasion with therapy (2015)
- We consider the multiscale model for glioma growth introduced in a previous work and extend it to account for therapy effects. Thereby, three treatment strategies involving surgical resection, radio-, and chemotherapy are compared for their efficiency. The chemotherapy relies on inhibiting the binding of cell surface receptors to the surrounding tissue, which impairs both migration and proliferation.

- Robustness for regression models with asymmetric error distribution (2015)
- In this work we focus on the regression models with asymmetrical error distribution, more precisely, with extreme value error distributions. This thesis arises in the framework of the project "Robust Risk Estimation". Starting from July 2011, this project won three years funding by the Volkswagen foundation in the call "Extreme Events: Modelling, Analysis, and Prediction" within the initiative "New Conceptual Approaches to Modelling and Simulation of Complex Systems". The project involves applications in Financial Mathematics (Operational and Liquidity Risk), Medicine (length of stay and cost), and Hydrology (river discharge data). These applications are bridged by the common use of robustness and extreme value statistics. Within the project, in each of these applications arise issues, which can be dealt with by means of Extreme Value Theory adding extra information in the form of the regression models. The particular challenge in this context concerns asymmetric error distributions, which significantly complicate the computations and make desired robustification extremely difficult. To this end, this thesis makes a contribution. This work consists of three main parts. The first part is focused on the basic notions and it gives an overview of the existing results in the Robust Statistics and Extreme Value Theory. We also provide some diagnostics, which is an important achievement of our project work. The second part of the thesis presents deeper analysis of the basic models and tools, used to achieve the main results of the research. The second part is the most important part of the thesis, which contains our personal contributions. First, in Chapter 5, we develop robust procedures for the risk management of complex systems in the presence of extreme events. Mentioned applications use time structure (e.g. hydrology), therefore we provide extreme value theory methods with time dynamics. To this end, in the framework of the project we considered two strategies. In the first one, we capture dynamic with the state-space model and apply extreme value theory to the residuals, and in the second one, we integrate the dynamics by means of autoregressive models, where the regressors are described by generalized linear models. More precisely, since the classical procedures are not appropriate to the case of outlier presence, for the first strategy we rework classical Kalman smoother and extended Kalman procedures in a robust way for different types of outliers and illustrate the performance of the new procedures in a GPS application and a stylized outlier situation. To apply approach to shrinking neighborhoods we need some smoothness, therefore for the second strategy, we derive smoothness of the generalized linear model in terms of L2 differentiability and create sufficient conditions for it in the cases of stochastic and deterministic regressors. Moreover, we set the time dependence in these models by linking the distribution parameters to the own past observations. The advantage of our approach is its applicability to the error distributions with the higher dimensional parameter and case of regressors of possibly different length for each parameter. Further, we apply our results to the models with generalized Pareto and generalized extreme value error distributions. Finally, we create the exemplary implementation of the fixed point iteration algorithm for the computation of the optimally robust in uence curve in R. Here we do not aim to provide the most exible implementation, but rather sketch how it should be done and retain points of particular importance. In the third part of the thesis we discuss three applications, operational risk, hospitalization times and hydrological river discharge data, and apply our code to the real data set taken from Jena university hospital ICU and provide reader with the various illustrations and detailed conclusions.

- A stochastic model featuring acid induced gaps during tumor progression. (2015)
- In this paper we propose a phenomenological model for the formation of an interstitial gap between the tumor and the stroma. The gap is mainly filled with acid produced by the progressing edge of the tumor front. Our setting extends existing models for acid-induced tumor invasion models to incorporate several features of local invasion like formation of gaps, spikes, buds, islands, and cavities. These behaviors are obtained mainly due to the random dynamics at the intracellular level, the go-or-grow-or-recede dynamics on the population scale, together with the nonlinear coupling between the microscopic (intracellular) and macroscopic (population) levels. The wellposedness of the model is proved using the semigroup technique and 1D and 2D numerical simulations are performed to illustrate model predictions and draw conclusions based on the observed behavior.

- Portfolio Optimization and Stochastic Control under Transaction Costs (2015)
- This thesis is concerned with stochastic control problems under transaction costs. In particular, we consider a generalized menu cost problem with partially controlled regime switching, general multidimensional running cost problems and the maximization of long-term growth rates in incomplete markets. The first two problems are considered under a general cost structure that includes a fixed cost component, whereas the latter is analyzed under proportional and Morton-Pliska transaction costs. For the menu cost problem and the running cost problem we provide an equivalent characterization of the value function by means of a generalized version of the Ito-Dynkin formula instead of the more restrictive, traditional approach via the use of quasi-variational inequalities (QVIs). Based on the finite element method and weak solutions of QVIs in suitable Sobolev spaces, the value function is constructed iteratively. In addition to the analytical results, we study a novel application of the menu cost problem in management science. We consider a company that aims to implement an optimal investment and marketing strategy and must decide when to issue a new version of a product and when and how much to invest into marketing. For the long-term growth rate problem we provide a rigorous asymptotic analysis under both proportional and Morton-Pliska transaction costs in a general incomplete market that includes, for instance, the Heston stochastic volatility model and the Kim-Omberg stochastic excess return model as special cases. By means of a dynamic programming approach leading-order optimal strategies are constructed and the leading-order coefficients in the expansions of the long-term growth rates are determined. Moreover, we analyze the asymptotic performance of Morton-Pliska strategies in settings with proportional transaction costs. Finally, pathwise optimality of the constructed strategies is established.

- Isogeometric Shell Discretizations for Flexible Multibody Dynamics (2015)
- This work aims at including nonlinear elastic shell models in a multibody framework. We focus our attention to Kirchhoff-Love shells and explore the benefits of an isogeometric approach, the latest development in finite element methods, within a multibody system. Isogeometric analysis extends isoparametric finite elements to more general functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) and works on exact geometry representations even at the coarsest level of discretizations. Using NURBS as basis functions, high regularity requirements of the shell model, which are difficult to achieve with standard finite elements, are easily fulfilled. A particular advantage is the promise of simplifying the mesh generation step, and mesh refinement is easily performed by eliminating the need for communication with the geometry representation in a Computer-Aided Design (CAD) tool. Quite often the domain consists of several patches where each patch is parametrized by means of NURBS, and these patches are then glued together by means of continuity conditions. Although the techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this work, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method which is a penalty approach that adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe stepsize restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. The approach presented here to tackle stiff systems is quite general and can be applied to all penalty problems fulfilling some regularity requirements. The numerical examples demonstrate an impressive convergence behavior of the isogeometric approach even for a coarse mesh, while offering substantial savings with respect to the number of degrees of freedom. We show a comparison between the different multipatch approaches and observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results. We also present a technique to couple the isogeometric shells with multibody systems using a pointwise interaction.

- Simulation of Degradation Processes in Lithium-Ion Batteries (2015)
- Lithium-ion batteries are increasingly becoming an ubiquitous part of our everyday life - they are present in mobile phones, laptops, tools, cars, etc. However, there are still many concerns about their longevity and their safety. In this work we focus on the simulation of several degradation mechanisms on the microscopic scale, where one can resolve the active materials inside the electrodes of the lithium-ion batteries as porous structures. We mainly study two aspects - heat generation and mechanical stress. For the former we consider an electrochemical non-isothermal model on the spatially resolved porous scale to observe the temperature increase inside a battery cell, as well as to observe the individual heat sources to assess their contributions to the total heat generation. As a result from our experiments, we determined that the temperature has very small spatial variance for our test cases and thus allows for an ODE formulation of the heat equation. The second aspect that we consider is the generation of mechanical stress as a result of the insertion of lithium ions in the electrode materials. We study two approaches - using small strain models and finite strain models. For the small strain models, the initial geometry and the current geometry coincide. The model considers a diffusion equation for the lithium ions and equilibrium equation for the mechanical stress. First, we test a single perforated cylindrical particle using different boundary conditions for the displacement and with Neumann boundary conditions for the diffusion equation. We also test for cylindrical particles, but with boundary conditions for the diffusion equation in the electrodes coming from an isothermal electrochemical model for the whole battery cell. For the finite strain models we take in consideration the deformation of the initial geometry as a result of the intercalation and the mechanical stress. We compare two elastic models to study the sensitivity of the predicted elastic behavior on the specific model used. We also consider a softening of the active material dependent on the concentration of the lithium ions and using data for silicon electrodes. We recover the general behavior of the stress from known physical experiments. Some models, like the mechanical models we use, depend on the local values of the concentration to predict the mechanical stress. In that sense we perform a short comparative study between the Finite Element Method with tetrahedral elements and the Finite Volume Method with voxel volumes for an isothermal electrochemical model. The spatial discretizations of the PDEs are done using the Finite Element Method. For some models we have discontinuous quantities where we adapt the FEM accordingly. The time derivatives are discretized using the implicit Backward Euler method. The nonlinear systems are linearized using the Newton method. All of the discretized models are implemented in a C++ framework developed during the thesis.