## Fachbereich Mathematik

### Filtern

#### Sprache

- Englisch (19) (entfernen)

#### Schlagworte

- Location Theory (6)
- Algebraic Optimization (2)
- Geometrical Algorithms (2)
- Multicriteria Optimization (2)
- Algebraic optimization (1)
- Analysis (1)
- Applications (1)
- Approximation (1)
- Bisector (1)
- Convex Analysis (1)

- Geometrical properties of generalized single facility location problems (2000)
- In this paper we deal with single facility location problems in a general normed space where the existing facilities are represented by sets. The criterion to be satis ed by the service facility is the minimization of an increasing function of the distances from the service to the closest point ofeach demand set. We obtain a geometrical characterization of the set of optimal solutions for this problem. Two remarkable cases - the classical Weber problem and the minmax problem with demand sets - are studied as particular instances of our problem. Finally, for the planar polyhedral case we give an algorithmic description of the solution set of the considered problems.

- Multicriteria Ordered Weber Problems (1999)
- In this paper we deal with the determination of the whole set of Pareto-solutions of location problems with respect to Q general criteria.These criteria include median, center or cent-dian objective functions as particular instances.The paper characterizes the set of Pareto-solutions of a these multicriteria problems. An efficient algorithm for the planar case is developed and its complexity is established. Extensions to higher dimensions as well as to the non-convexcase are also considered.The proposed approach is more general than the previously published approaches to multi-criteria location problems and includes almost all of them as particular instances.

- On the Number of Criteria Needed to Decide Pareto Optimality (2000)
- In this paper we address the question of how many objective functions are needed to decide whether a given point is a Pareto optimal solution for a multicriteria optimization problem. We extend earlier results showing that the set of weakly Pareto optimal points is the union of Pareto optimal sets of subproblems and show their limitations. We prove that for strictly quasi-convex problems in two variables Pareto optimality can be decided by consideration of at most three objectives at a time. Our results are based on a geometric characterization of Pareto, strict Pareto and weak Pareto solutions and Helly's Theorem. We also show that a generalization to quasi-convex objectives is not possible, and state a weaker result for this case. Furthermore, we show that a generalization to strictly Pareto optimal solutions is impossible, even in the convex case.

- Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem (2000)
- We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet defining. We show its superior computational performance by benchmarking it on a well known data set.

- A unified approach to network location problems (1999)
- In this paper we introduce a new type of single facility location problems on networks which includes as special cases most of the classical criteria in the literature. Structural results as well as a finite dominationg set for the optimal locations are developed. Also the extension to the multi-facility case is discussed.

- Multicriteria network location problems with sumb objectives (1999)
- In this paper network location problems with several objectives are discussed, where every single objective is a classical median objective function. We will lock at the problem of finding Pareto optimal locations and lexicographically optimal locations. It is shown that for Pareto optimal locations in undirected networks no node dominance result can be shown. Structural results as well as efficient algorithms for these multi-criteria problems are developed. In the special case of a tree network a generalization of Goldman's dominance algorithm for finding Pareto locations is presented.

- Multiple objective programming with piecewise linear functions (1999)
- An approach to generating all efficient solutions of multiple objective programs with piecewise linear objective functions and linear constraints is presented. The approach is based on the decomposition of the feasible set into subsets, referred to as cells, so that the original problem reduces to a series of lenear multiple objective programs over the cells. The concepts of cell-efficiency and complex-efficiency are introduced and their relationship with efficiency is examined. A generic algorithm for finding efficent solutions is proposed. Applications in location theory as well as in worst case analysis are highlighted.

- Error bounds for the approximative solution of restricted planar location problems (1999)
- Facility location problems in the plane play an important role in mathematical programming. When looking for new locations in modeling real-word problems, we are often confronted with forbidden regions, that are not feasible for the placement of new locations. Furthermore these forbidden regions may habe complicated shapes. It may be more useful or even necessary to use approcimations of such forbidden regions when trying to solve location problems. In this paper we develop error bounds for the approximative solution of restricted planar location problems using the so called sandwich algorithm. The number of approximation steps required to achieve a specified error bound is analyzed. As examples of these approximation schemes, we discuss round norms and polyhedral norms. Also computational tests are included.

- Classification of Location Problems (1999)
- There are several good reasons to introduce classification schemes for optimization problems including, for instance, the ability for concise problem statement opposed to verbal, often ambiguous, descriptions or simple data encoding and information retrieval in bibliographical information systems or software libraries. In some branches like scheduling and queuing theory classification is therefore a widely accepted and appreciated tool. The aim of this paper is to propose a 5-position classification which can be used to cover all location problems. We will provide a list of currentliy available symbols and indicate its usefulness in a - necessarily non-comprehensive - list of classical location problems. The classification scheme is in use since 1992 and has since proved to be useful in research, software development, classroom, and for overview articles.

- On the number of Criteria Needed to Decide Pareto Optimality (1999)
- In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions